Tìm tất cả các số nguyên dương n sao cho: n+1; n+5; n+7; n+13; n+17; n+25; n+37 đều là các số nguyên tố.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
**** mik nha
n+1;n+5;n+7;n+13;n+17;n+25;n+37.
cách làm:
n+7=n+7.1
n+1=(n+1)+7.0
n+37=(n+2)+7.5
n+17=(n+3)+7.2
n+25=(n+40)+7.3
n+5=(n+5)+7.0
n+13=(n+6)+7.1
các số khi chia cho 7 sẽ có 7 số dư khác nhau
==>trong các số trên có ít nhất 1 số chia hết cho 7
các số ,n+7,n+13,n+17,n+25,n+37 đều lớn hơn 7 néu chúng chia hết cho 7 thì đó là các hợp số ==> loại
==>n+1 hoặc n+5 chia hết cho 7
+trường hợp 1
n+1=7==>n=6,khi đó các số đều là SNT
trường hợp 2
n+5=7==>n=2 khi đó n+7=9 không phải là SNT nên loại vậy n=6