K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

a) Ta có \(x^2+2x+2=\left(x^2+2x+1\right)\)\(+1=\left(x+1\right)^2+1\)Ma \(\left(x+1\right)^2\ge0\forall x\)

Nen \(\left(x+1\right)^2+1>0\). Vậy đa thức trên vô nghiệm

b) \(-x^2+2x-3=\)\(-\left(x^2-2x+1\right)-2\)\(=-\left(x-1\right)^2-2\)

Ma \(-\left(x-1\right)^2\le0\forall x\)Nen \(-\left(x-1\right)^2-2< 0\)

Vậy đa thức trên vô nghiệm

12 tháng 9 2021

\(a,=6x^2+23x+21-\left(6x^2+23x-55\right)\\ =76\left(đpcm\right)\\ b,=3x^4+6x^3+9x^2-2x^3-4x^2-6x+x^2+2x+3-4x^3+4x-3x^4-6x^2\\ =3\left(đpcm\right)\)

16 tháng 7 2023

a, \(x^2\) + 4\(x\) + 10

= ( \(x^2\) + 4\(x\) + 4) + 6

= (\(x\) + 2)2 + 6

vì (\(x\) + 2)2 ≥ 0 

⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)

b, \(x^2\) - 2\(x\) + 5

= (\(x^2\) - 2\(x\) + 1) + 4 

= (\(x\) - 1)2 + 4

Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0

Vậy đa thức đã cho vô nghiệm (đpcm)

18 tháng 1 2022

giúp mình với

 

18 tháng 1 2022

a. \(\dfrac{x^2+2x+3}{x^2-x+1}=0\) ⇔x2+2x+3=0 ⇔x2+2x+1+2=0 ⇔(x+1)2+2=0

Vì (x+1)2+2>0 nên phương trình đã cho vô nghiệm.

b) \(\dfrac{x}{x+2}+\dfrac{4}{x-2}=\dfrac{4}{x^2-4}\) ⇔\(\dfrac{x\left(x-2\right)+4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4}{\left(x-2\right)\left(x+2\right)}\)

\(x\left(x-2\right)+4\left(x+2\right)=4\) ⇔x2-2x+4x+8-4=0 ⇔x2+2x+4=0                ⇔x2+2x+1+3=0 ⇔(x+1)2+3=0

Vì (x+1)2+3>0 nên phương trình đã cho vô nghiệm.

     
15 tháng 1 2021

a) Ta có \(\left|x\right|\ge0\) nên |x| + 1 > 0 với mọi x. Do đó phương trình đã cho vô nghiệm.

b) Tương tự, phân tích \(x^2+2x+3=\left(x+1\right)^2+2>0\)

10 tháng 5 2022

\(f\left(x\right)=x^2+1\ge1\)

=> Đa thức không có nghiệm

5 tháng 8 2021

GIÚP MIK VS NHA MN gianroi

5 tháng 8 2021

không

5 tháng 2 2021

a) 2(x+1)=2x-1

<=> 2x+2=2x-1

<=> 2x+2-2x+1=0

<=>1=0

=>Pt vô nghiệm

8 tháng 5 2022

a. ta có 

    (2x − 3)2 ≥ 0

=>  (2x − 3)2 + 10 > 0

=> đa thức trên ko có nghiệm

b. ta có:

  x2 ≥ 0

    4 > 0

=> x2 + 4 > 0

=> x2 + 2x + 4 > 0

=> đa thức trên ko có nghiệm

câu c mik vẫn chưa biết chứng minh vì bài này lần đầu tiên làm. Sorry bạn !!!

 

18 tháng 3 2022

a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán 

b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm

c. thì.... tớ ko biết

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
a.

$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$

$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$

$=4(2x+8)+2(-2)(2x-8)$

$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$

b.

$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$

c.

$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$

$=x^4+2x^2-(x^4+6x^2-4x^2)$

$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$

 

a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)

\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)

\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)

\(=34\)

b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=x^3-8-x^3-8\)

=-16

c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)

\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)

\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)

\(=-9\)