Bài 1:Cho tam giác ABC vuông góc tại A, đường cao AH, phân giác AI của góc HACa) Chứng minh tam giác ABI là tam giác cân b) Cho AB=7,5cm, AC=10 cm. Tính BC,AH,HI,HC,ICc) Phân giác BE của góc ABC cắt AH tại K(E thuộc AC). Chứng minh IK//AC và tính AE,BEd) Gọi P là trung điểm của AB. Chứng minh CP đi qua trung điểm của đường vuông góc hạ từ H tới ACBài 2: Cho tam giác ABC vuông góc tại C. Gọi M lá trung điểm của AB....
Đọc tiếp
Bài 1:Cho tam giác ABC vuông góc tại A, đường cao AH, phân giác AI của góc HAC
a) Chứng minh tam giác ABI là tam giác cân
b) Cho AB=7,5cm, AC=10 cm. Tính BC,AH,HI,HC,IC
c) Phân giác BE của góc ABC cắt AH tại K(E thuộc AC). Chứng minh IK//AC và tính AE,BE
d) Gọi P là trung điểm của AB. Chứng minh CP đi qua trung điểm của đường vuông góc hạ từ H tới AC
Bài 2: Cho tam giác ABC vuông góc tại C. Gọi M lá trung điểm của AB. Kẻ MD vuông góc CA, ME vuông góc CB
a) Tứ giác CDME là hình gì ? Vì sao ?
b) Gỉa sử AC =5cm, CB =12cm. Tính DE
c) Kẻ đường cao CH của tam giác ABC. Tính CH nếu AC =12cm, AB=15cm
d) Chứng minh CH vuông góc DE
b: \(AB=\sqrt{20^2-16^2}=12\left(cm\right)\)
CH=16^2/20=256/20=12,8cm
AH=12*16/20=192/20=9,6cm
ΔHAC vuông tại H có AD là phân giác
=>DC/AC=DH/AH
=>DC/5=DH/3=HC/8=12,8/8=1,6
=>DC=8cm
c: góc BAD=90 độ-góc CAD
góc BDA=90 độ-góc HAD
mà góc CAD=góc HAD
nên góc BAD=góc BDA
=>BA=BD=BE
=>ΔDAE vuông tại A
ΔDAE vuông tại A có AH vuông góc DE
nên HD*HE=AH^2
ΔABC vuông tại A có AH vuông góc BC
nên AH^2=HB*HC=HD*HE