Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E
a) Xét tam giác HBA và tam giác ABC có:
Góc B chung
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\frac{HB}{AB}=\frac{AB}{CB}\Rightarrow AB^2=BH.BC\)
b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có:
\(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
Áp dụng tính chất tia phân giác trong tam giác ta có:
\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{12}{20}=\frac{3}{5}\)
mà AD + DC = AC = 16 cm nên \(AD=6cm.\)
c) Xét tam giác BEA và tam giác BDC có:
\(\widehat{ABE}=\widehat{CBD}\) (BD là tia phân giác)
\(\widehat{BAE}=\widehat{BCD}\) (Cùng phụ với góc \(\widehat{ABC}\) )
\(\Rightarrow\Delta BEA\sim\Delta BDC\left(g-g\right)\)
\(\Rightarrow\frac{BE}{BD}=\frac{AB}{CB}\)
Lại có \(\frac{AB}{CB}=\frac{AD}{DC}\Rightarrow\frac{BE}{BD}=\frac{AD}{DC}\Rightarrow\frac{DB}{EB}=\frac{DC}{DA}\)
Bài giải :
a) Xét tam giác HBA và tam giác ABC có:
Góc B chung
^BHA=^BAC(=90o)
⇒ΔHBA∼ΔABC(g−g)
⇒HBAB =ABCB ⇒AB2=BH.BC
b) Áp dụng định lý Pi-ta-go cho tam giác vuông, ta có:
BC=√AB2+AC2=20(cm)
Áp dụng tính chất tia phân giác trong tam giác ta có:
ADDC =ABBC =1220 =35
mà AD + DC = AC = 16 cm nên AD=6cm.
c) Xét tam giác BEA và tam giác BDC có:
^ABE=^CBD (BD là tia phân giác)
^BAE=^BCD (Cùng phụ với góc ^ABC )
⇒ΔBEA∼ΔBDC(g−g)
⇒BEBD =ABCB
Lại có ABCB =ADDC ⇒BEBD =ADDC ⇒DBEB =DCDA
AMAM là đường trung tuyến ứng với cạnh huyền nên AM=BC2=BMAM=BC2=BM
⇒△MAB⇒△MAB cân tại MM
⇒BAMˆ=MBAˆ⇒BAM^=MBA^
Ta có:
BADˆ=DAMˆ−BAMˆ=900−MBAˆ=900−HBAˆBAD^=DAM^−BAM^=900−MBA^=900−HBA^
HABˆ=900−HBAˆHAB^=900−HBA^
⇒BADˆ=HABˆ⇒BAD^=HAB^ nên ABAB là tia phân giác DAHˆDAH^ (đpcm)
b)
Xét tam giác CADCAD và ABDABD có:
DˆD^ chung
ACDˆ=900−ABHˆ=BADˆACD^=900−ABH^=BAD^
⇒△CAD∼△ABD⇒△CAD∼△ABD (g.g)
⇒CAAB=ADBD=CDAD⇒CAAB=ADBD=CDAD
⇒CA2AB2=CDBD(∗)⇒CA2AB2=CDBD(∗)
Dễ thấy △BAH∼△BCA△BAH∼△BCA (g.g) và △CAH∼△CBA△CAH∼△CBA (g.g)
⇒BABC=BHBA⇒BABC=BHBA và CACB=CHCACACB=CHCA
⇒AB2=BC.BH⇒AB2=BC.BH và AC2=CH.BCAC2=CH.BC
⇒AC2AB2=CHBH(∗∗)⇒AC2AB2=CHBH(∗∗)
Từ (∗);(∗∗)⇒CDBD=CHBH(∗);(∗∗)⇒CDBD=CHBH
⇒CD.BH=CH.BD⇒CD.BH=CH.BD (đpcm)
Hình thì bạn tự vẽ nha
a)Xét tam giác ABC và tam giá HBA, có:
Góc B chung
Góc BAC = góc BHA
--> Tam giác ABC ~ Tam giác HBA
b)Xét tam giác AHB và tam giác HCA, có
Góc A - góc H
Góc ABH = Góc AHC
-->tam giác AHB ~ tam giác AHC
-->AH/HB = HC/AH
-->AH.AH = HB.HC
-->AH^2=HB.HC(đpcm)
c)
+) Áp dụng định lý PTG vào tam giác vuông ABC, có :
BC^2=AB^2 + AC^2
<--> 6^2 + 8^2 = 100
--> BC = 10(cm)
+)Vì tam giác ABC ~ Tam giác HBA :
AB/HB = BC/BA = AC/HA
-)AB/HB = BC/BA
= 6/HB =10/6
--> HB = 6.6/10
-->HB = 3,6(cm)
-)BC/BA =AC/HA
=10/6 = 8/HA
--> HA = 6.8/10
--> HA = 4,8 (cm)
d) tính tỉ số diện tích thì bạn ghi tỉ số đồng dạng ra rồi bình phương tỉ số đó lên
là đc tỉ số đồng dạng ạ
xét tam giác ABC có BC2=ab2 + ac2
thay số BC2=62+82
BC2=36+64=100
BC=10(cm)
còn lại mình không bít,xin lỗi
A B C H D E
a)Xét \(\Delta ABC\) và \(\Delta HAC\) có
\(\widehat{C}\) chung
\(\widehat{BAC}=\widehat{AHC}\)
=> \(\Delta ABC\) \(\sim\)\(\Delta HAC\) (g-g)
b) Xét \(\Delta ABC\) vuông tại A có :
\(BC^2=AB^2+AC^2\)
\(BC^2=81+144\)
\(BC^2=225\)
BC=15 cm
Xét \(\Delta ABC\) có : CD là tia phân giác
=> \(\dfrac{AD}{DB}=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)
c) Đề bài sai nhé vì nếu \(AH^2=AH.HB\)
\(\Leftrightarrow HB=HA\Rightarrow\Delta AHB\) vuông cân tại H
=> \(\widehat{ABH}=45^o\) => \(\Delta ABC\) vuông cân tại A => AB =AC => 9=12(vô lý)
à lộn HB là HC nha