K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  

24 tháng 5 2017

Tại mình không có cầm máy tính mà

24 tháng 5 2017

mk làm đc r nhé dễ quá đăng thử thui hiih

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=CH^2+AH^2\)

\(\Leftrightarrow AH^2=AC^2-CH^2=20^2-16^2=144\)

hay AH=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{16}=9\left(cm\right)\)

Ta có: BC=BH+CH(H nằm giữa B và C)

nên BC=9+16=25(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=25^2-20^2=225\)

hay AB=15(cm)

Vậy: AB=15cm; AH=12cm; BC=25cm; BH=9cm

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được: 

\(AC^2=BH^2+CH^2\)

\(\Leftrightarrow AC^2=5^2+12^2=169\)

hay AC=13(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{5}=28.8\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=28,8+5=33,8(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=33.8^2-13^2=973.44\)

hay \(AB=31.2cm\)

Vậy: AC=13cm; AB=31,2cm; BC=33,8cm; BH=28,8cm

28 tháng 12 2020

Áp dụng định lí Pytago vào ΔBAH vuông tại H, ta được: 

\(AH^2+HB^2=AB^2\)

\(\Leftrightarrow HB^2=AB^2-AH^2=30^2-24^2=324\)

hay HB=18(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{24^2}{18}=32\left(cm\right)\)

Ta có: BC=HB+HC(H nằm giữa B và C)

nên BC=18+32=50(cm)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\LeftrightarrowÁC^2=BC^2-AB^2=50^2-30^2=1600\)

hay AC=40cm

Vậy: AC=40cm; CH=32cm; BC=50cm; BH=18cm

a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)

=>\(BC^2=4^2+7,5^2=72,25\)

=>\(BC=\sqrt{72,25}=8,5\)

Xét ΔABC vuông tại A có \(cotB=\dfrac{BA}{AC}\)

=>\(cotB=\dfrac{4}{7,5}=\dfrac{8}{15}\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

Xét ΔABH vuông tại H có \(cotB=\dfrac{BH}{AH}\)

=>\(\dfrac{BH}{AH}=\dfrac{8}{15}\)

=>\(BH=\dfrac{8}{15}\cdot AH\)

\(AB^2=BH\cdot BC=\dfrac{8}{15}\cdot AH\cdot BC\)

7 tháng 5 2021

 Xét tam giác amc = tam giác dmb có: 

       cạnh mc = mb[ giả thiết]

        góc amc =dmb[2 góc đối đỉnh]

        ta có bd song song với ac nên suy ra góc acm = góc mbd

           => tam giác amc = tam giác dmb [ g.c.g]