K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

Từng bài 1 thôi nha!

Mình làm bài 3 cho dễ

Bn tự vẽ hình

a) CM tg ABH=tg ACH (ch-cgv)

=> HC=HB=2 góc tương ứng 

Nên H là trung điểm BC

=> HB=HC=BC:2=8:2=4 ; góc BAH= góc CAH

b) Có: tg ABH vuông tại H (AH vuông góc BC)

=> AH2+BH2=AB => AH2+42=52 => AH2=9

Mà AH>O Nên AH=3

c) Xét tg ADH và tg AEH có:

\(\Delta ADH=\Delta AEH\left(ch-gh\right)\hept{\begin{cases}\widehat{ADH}=\widehat{AEH}=90^o\\AHcanhchung\\\widehat{DAH}=\widehat{EAH}\left(\Delta ABH=\Delta ACH\right)\end{cases}}\)

=> HD=HE(2 góc tương ứng)

=> tg HDE cân tại H 

a)

Xét ΔABD và ΔAED có:

AB=AE (giả thiết)

Góc BAD= góc EAD (do AD là phân giác góc A)

AD chung

⇒⇒ ΔABD=ΔAED (c-g-c)

b) Ta có ΔABD=ΔAED

⇒⇒ BD=DE và góc ABD= góc AED

⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)

Xét ΔDBF và ΔDEC có:

BD=DE

Góc DBF= góc DEC

Góc BDF= góc EDC ( đối đỉnh )

⇒⇒ ΔDBF=ΔDEC (g-c-g)

12 tháng 1 2021

too easy

NM
12 tháng 1 2021

B A D C E H K

câu a ta có AB=BE, BD chung và góc ABD=BDE do BD là phân giác của ABC

do đó hai tam giác ABD và EBD bằng nhau theo trường hợp cạnh góc cạnh,

b, do từ kết quả câu a ta có DEB=DA B=90 độ do đó DE vuông với EB , mà AH vuông góc với EB nên

DE //AH.

c. ta có \(KB=KA+AB=EC+EB=BC\)

mà AB=BE và góc B chung 

do đó hai tam giác ABC và EBK bằng nhau theo trường hợp cạnh góc cạnh.

. dễ thấy AM và AB là tia phân giác của hai góc kề bù

do đó chúng vuông góc với nhau

nên tam giác DBM vuông tại D do đó \(\widehat{ABD}+\widehat{AMD}=90^0\)

19 tháng 4 2015

 1,a, cm: tam giác BEC và tg BDC(c.g.c0

b, cm : tg ABE= tg ACD(c,g.c)

c, cm: BK=KC ( cm: tg BKD= tg CED)

25 tháng 3 2017

CHO tam giác ABC có A =90 ,AB=8CM,AC=6CM

a, Tính BC

b, Trên cạnh AC lấy điểm E sao cho AE=2CM,, Trên tia đối của tia AB lấy điểm D sao cho AD=AB.chứng minh tam giác BEC=DEC

c, Chuwsngh minh DE ĐI QUA trung điểm cạnh BC

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: ΔBAD=ΔBHD

=>DA=DH

mà DH<DC

nên DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

=>ΔDAK=ΔDHC

=>góc ADK=góc HDC

=>góc HDC+góc KDC=180 độ

=>K,D,H thẳng hàng

a: Xét ΔBAD và ΔBKD có 

BA=BK

\(\widehat{ABD}=\widehat{KBD}\)

BD chung

Do đó: ΔBAD=ΔBKD

Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)

hay DK\(\perp\)BC

b: Xét ΔBEC có BE=BC

nên ΔBEC cân tại B

mà BI là đường phân giác

nên BI là đường cao

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.2)Cho tam giác ABC vuông tại A, K là trung điểm của...
Đọc tiếp

1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?

3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM

3
13 tháng 7 2015

bạn đăng từng bài lên 1 đi

mik giải dần cho

30 tháng 1 2017

dễ mà bn

5 tháng 2 2017

cần vẽ hình 0 bạn