Một số tự nhiên có 2 chữ số. Chữ số hàng đơn vị gấp 2 lần chữ số hàng chục. Nếu đổi chỗ 2 chữ số ấy cho nhau thì được một số mới lớn hơn số ban đầu là 36 đơn vị. Tìm số ban đầu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có: b=3a và 10b+a-10a-b=18
=>3a-b=0 và -9a+9b=18
=>a=1 và b=3
Gọi số cần tìm là = 10a + b (a, b ∈ N. 0 < a < b < 10)
Ta có b = 3a
Khi đổi hai chữ số ta được số = 10b + a
Vì số mới lớn hơn số cũ 54 đơn vị nên ta có phương trình: 10b + a – 54 = 10a + b
⇔ 9b – 9a = 54
⇔ 9.3a – 9a = 54
⇔ 18a = 54
⇔ a =3 (tmđk)
Vậy số ban đầu cần tìm là 39.
Gpoij số cần tìm là : ab
Khi đó: b gấp đôi a
Ta có: ab + 370 = a1b
<=> 10a + b + 370 = 100a + 10 + b
=> b - b + 370 - 10 = 100a - 10a
=> 360 = 90a
=> a = 360 : 90
=> a = 4
Vì đầu bài bài cho b gấp đổi a
=> b = 4 x 2
=> b = 8
Vậy số ban đầu là 48
Gọi \(\overline{ab}\)là số tự nhiên cần tìm (0 < a < 9; 0 < b < 9)
Ta có: \(\overline{a9b}-\overline{ab}=810\)
<=> \(\left(100a+90+b\right)-\left(10a+b\right)=810\)
<=> \(100a+90+b-10a-b=810\)
<=> \(90a+90=810\)
<=> \(90\left(a+1\right)=810\)
<=> \(a+1=9\)
<=> \(a=8\)
và \(a=2b\)
=> \(b=\frac{a}{2}=\frac{8}{2}=4\)
Vậy số ban đầu là số 84.
Gọi số ban đầu là \(\overline{ab}\)
Theo đề, ta có:
a=2b và 10a+b-10b-a=36
=>a-2b=0 và a-b=4
=>a=8 và b=4
Gọi số cần tìm có dạng là \(\overline{ab}\)
Theo đề, ta có hệ: b=2a và 10b+a-10a-b=18
=>2a-b=0 và -9a+9b=18
=>a=2 và b=4
Gọi số cần tìm là \(ab\left(ab\in N.0< a< b< 10\right)\)
Ta có : \(b=3a\)
Khi đổi hai chữ số ta được số \(ba=10b+a\)
Vì số mới lớn hơn số cũ 54 đơn vị nên ta có phương trình:
\(10b+a-54=10a+b\)
\(\Leftrightarrow9b-9a=54\)
\(\Leftrightarrow9.3a-9a=54\)
\(\Leftrightarrow18a=54\)
\(\Leftrightarrow a=3\left(tm\right)\)
Mà \(b=3a\) nên \(b=3\times3=9\left(tm\right)\)
Vậy số cần tìm là \(39\)