K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

21 tháng 4 2022

xét tam giác ABC và tam giác HBA có

góc BAC=góc AHB=90 độ

góc B chung

suy ra tam giác ABC đồng dạng với tam giác HBA

suy ra AB phần HB = BC phần AB

a: Xét ΔHBA vuông tạiH và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: Xét ΔHAC vuông tại H và ΔHDB vuông tại H có

góc HAC=góc HDB

=>ΔHAC đồng dạng vơi ΔHDB

=>HA/HD=HC/HB

=>HA*HB=HD*HC

12 tháng 4 2021

hình bạn tự vẽ 

a) Xét ΔHBA và ΔABC có :

^H = ^A = 900

^B chung

=> ΔHBA ~ ΔABC (g.g)

b) Vì ΔHBA vuông tại H, áp dụng định lí Pythagoras ta có :

AB2 = BH2 + AH2

=> BH = √(AB2 - AH2) = √(152 - 122) = 9cm

Vì ΔHBA ~ ΔABC (cmt) => HB/AB = BA/BC = HA/AC

=> BC = AB2/HB = 152/9 = 25cm

Ta có BC = BH + HC => HC = BC - BH = 25 - 9 = 16cm

=> SAHC = 1/2AH.HC = 1/2.12.16 = 96cm2

c) mình chưa nghĩ ra :v 

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA∼ΔABC(g-g)

a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

b: ΔBAC đồng dạng vơi ΔBHA

=>BA/BH=BC/BA

=>BA^2=BH*BC

c: ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

4 tháng 4 2022

a.Xét tam giác HBA và tam giác ABC, có:

^AHB = ^CAB = 90 độ

^B: chung

Vậy tam giác HBA đồng dạng tam giác ABC ( g.g )

b.

Áp dụng định lý pitago, ta có:

\(BC=\sqrt{8^2+10^2}=2\sqrt{41}cm\)

Ta có: tam giác HBA đồng dạng tam giác ABC

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

\(\Leftrightarrow\dfrac{AH}{10}=\dfrac{8}{2\sqrt{41}}\)

\(\Leftrightarrow AH=\dfrac{8.10}{2\sqrt{41}}=\dfrac{40\sqrt{41}}{41}cm\)

Ta có: tam giác HBA đồng dạng tam giác ABC

\(\Rightarrow\dfrac{HB}{AB}=\dfrac{AB}{BC}\)

\(\Leftrightarrow AB^2=HB.BC\)

\(\Leftrightarrow8^2=2\sqrt{41}HB\)

\(\Leftrightarrow HB=\dfrac{32\sqrt{41}}{41}cm\)

25 tháng 4 2023

loading...  

a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:

∠B chung

⇒ ∆ABC ∽ ∆HBA (g-g)

b) ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10

Do ∆ABC ∽ ∆HBA (cmt)

⇒ AC/AH = BC/AB

⇒ AH = AB.AC/BC

= 6.8/10

= 4,8 (cm)

∆ABH vuông tại H

⇒ AB² = AH² + BH² (Pytago)

⇒ BH² = AB² - AH²

= 6² - (4,8)²

= 12,96

⇒ BH = 3,6 (cm)

25 tháng 4 2023

 

a) Ta có:

 

- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.

 

- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.

 

- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).

 

b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:

 

- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.

 

- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.

 

- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.

 

Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.