Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
a)Tính BC:
\(\Delta ABC\)vuông tại A nên:
BC2=AB2+AC2
BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)
b) Xét \(\Delta vuôngABC\)và\(\Delta VuôngHBA\)có:
\(\widehat{B}\):chung
Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)
Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)
=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH =>AB2 = BC.BH
c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:
\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)
Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:
\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác) (2)
Vì BI là đường phân giác của \(\Delta HBA\) nên:
\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác) (3)
Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
DO đó: ΔABC\(\sim\)ΔHBA
b: Ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB