cho hình thang abcd có ac và bd cắt nhau tại o.biết sboc là 12cm2 và sdoc là 24 cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔOAB và ΔOCD có
\(\widehat{AOB}=\widehat{COD}\)
\(\widehat{OAB}=\widehat{OCD}\)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{1}{2}\)
Vì ABCD là hình thang có AC cắt BD tại O
nên \(S_{AOD}=S_{BOC}=15\left(cm^2\right)\)
\(\dfrac{OA}{OC}=\dfrac{1}{2}\)
=>\(S_{AOB}=\dfrac{1}{2}\cdot S_{BOC}\)
=>\(S_{AOB}=\dfrac{1}{2}\cdot15=7,5\left(cm^2\right)\)
\(\dfrac{OA}{OC}=\dfrac{1}{2}\)
=>\(\dfrac{S_{OAD}}{S_{DOC}}=\dfrac{AO}{OC}=\dfrac{1}{2}\)
=>\(S_{DOC}=30\left(cm^2\right)\)
\(S_{ABCD}=S_{AOB}+S_{BOC}+S_{DOC}+S_{AOD}\)
\(=30+15+15+7,5=52,5\left(cm^2\right)\)
A B C D O
a/
Hai tg ABD và tg ABC có chung AB và đường cao từ D->AB = đường cao từ C->AB nên \(S_{ABD}=S_{ABC}\)
Hai tg này có phần diện tích chung là \(S_{ABO}\Rightarrow S_{AOD}=S_{BOC}\)
b/
Hai tg ABC và tg ACD có đg cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABC}}{S_{ACD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\)
Hai tg trên có chung AC nên
\(\dfrac{S_{ABC}}{S_{ACD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)
Hai tg ABO và tg AOD có chung AO nên
\(\dfrac{S_{ABO}}{S_{AOD}}=\) đg cao từ B->AC / đg cao từ D->AC\(=\dfrac{1}{2}\)
\(\Rightarrow S_{AOD}=2xS_{ABO}=2x3,5=7cm^2\)
\(\Rightarrow S_{ABD}=S_{ABO}+S_{AOD}=3,5+7=10,5cm^2\)
Hai tg ABD và tg BCD có đg cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABD}}{S_{BCD}}=\dfrac{AB}{CD}=\dfrac{1}{2}\Rightarrow S_{BCD}=2xS_{ABD}=2x10,5=21cm^2\)
\(\Rightarrow S_{ABCD}=S_{ABD}+S_{BCD}=10,5+21=31,5cm^2\)
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)