tam iac ABC vuông tại có góc B=30 độ . Trên cạnh Cb lấy điểm D so cho CD=CA. Chứng minh BC=2AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆AHD và ∆FHA có:
^AHD = ^FHA (= 900)
\(\frac{AH}{HD}=\frac{HF}{AH}\)(gt)
Do đó ∆AHD ~ ∆FHA (c.g.c)
⇒ ^HAD = ^HFA
Mà ^HFA + ^FAH = 900 nên ^HAD + ^FAH = 900 ⇒ ^FAD = 900
Vậy ∆ADF vuông tại A (đpcm)
b) Đặt AC = CD = a thì AB = 2a
∆ABC vuông tại A nên BC2 = AB2 + AC2 = (2a)2 + a2 = 5a2 ⇒ \(BC=a\sqrt{5}\)
Ta có: BD = BC - CD \(=a\sqrt{5}-a\Rightarrow BD^2=a^2\left(\sqrt{5}-1\right)^2=a^2\left(6-2\sqrt{5}\right)\)(1)
và AE = AB - BE = AB - BD = AB - (BC - CD) = AB - BC + CD \(=2a-a\sqrt{5}+a=\left(3-\sqrt{5}\right)a\)
\(\Rightarrow AB.AE=2a.\left(3-\sqrt{5}\right)a=a^2\left(6-2\sqrt{5}\right)\)(2)
Từ (1) và (2) suy ra BD2 = AB.AE (đpcm)
Xét △ACE và△DCE có
AC=DC(giả thiết )
góc DCE =góc ACE (vì CE là phân giác của góc DAC)
CE:cạnh chung
=>△ACE=△DCE(c-g-c)
=>EA=ED(2 góc tương ứng)
vậy EA=ED
tự làm câu b nhé
a, Xét ∆ABC vuông tại A có: B + C = 90o
=> 30o + C = 90o
=> C = 60o
b, Vì CD là tia phân giác của C
=> ACD = DCB = ACB/2 = 60o/2 = 30o
Xét ∆ACB và ∆MCD
Có: AD: cạnh chung (gt)
ACD = DCM (vì CD là tia p/g của C)
CA = CM (gt)
=> ∆ACB = ∆MCD (c.g.c)
c, XY vuông góc CA => KCA = 90o
Vì AK // CD => CKA = CDA (2 góc so le trong)
Xét ∆CAK vuông tại C và ∆ADC vuông tại A
Có: CA: cạnh chung
CKA = CDA (cmt)
=> ∆CAK = ∆ADC (cgv-gn)
=> AK = DC (2 cạnh tương ứng)
d, Vì ∆CAK = ∆ADC (câu c)
=> KAC = ACD (2 góc tương ứng)
Mà ACD = 30o
=> KAC = 30o
Xét ∆KAC vuông tại C có: KAC + AKC = 90o
=> 30o + AKC = 90o
=> AKC = 60o
Ta có hình vẽ A B C D E x
a) Xét tam giác ACE và tam giác DCE, ta có:
AC=DC( giả thiết)
Góc ACE=Góc ECD (vì tia x là tia phân giác của góc C)
CE là cạnh chung
Do đó: tam giác ACE=tam giác DCE (c-g-c)
b) Có vẻ như đề của bạn thiếu nên mình giúp bạn câu a) thôi nhé! ^^
bạn ơi đề bài của bạn có thể cho rõ hơn k