Cho \(\Delta ABC\) (\(AB< AC\)) có ba góc nhọn, kẻ đường cao \(AH\) (\(H\) thuộc \(BC\)). Từ \(H\) kẻ \(HD\perp AB\) và \(HE\perp AC\) ( \(D\) thuộc \(AB\), \(E\) thuộc \(AC\) )
a) Cm: \(\Delta ADH\) đồng dạng \(AHB\) và \(\Delta AEH\) đồng dạng \(\Delta AHC\)
b) Cm: \(AD.AB=AE.AC\)
C) Tia phân giác góc \(BAC\) cắt \(DE\), \(BC\) lần lượt tại \(M,N\). Cm: \(\dfrac{MD}{ME}=\dfrac{NC}{NB}\)
Cậu ơi, cậu hk lm câu c cho tớ hả :3?