K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

2 tháng 2 2021

vaidaibangioithe))):

AH
Akai Haruma
Giáo viên
24 tháng 4 2018

Lời giải:

Bạn tự vẽ hình giùm mình nhé.

a) Xét tam giác $BAC$ và $BHA$ có:

\(\left\{\begin{matrix} \widehat{BAC}=\widehat{BHA}=90^0\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle BAC\sim \triangle BHA(g.g)\)

b)

Xét tam giác $BAC$ và $AHC$ có:

\(\left\{\begin{matrix} \widehat{BAC}=\widehat{AHC}=90^0\\ \text{chung góc C}\end{matrix}\right.\Rightarrow \triangle BAC\sim \triangle AHC(g.g)\)

\(\Rightarrow \frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC\)

c)

Xét tam giác $HEA$ và $BHA$ có:

\(\left\{\begin{matrix} \widehat{HEA}=\widehat{BHA}=90^0\\ \widehat{EHA}=\widehat{HBA}(=90^0-\widehat{BHE})\end{matrix}\right.\)

\(\Rightarrow \triangle HEA\sim \triangle BHA(g.g)\)

\(\Rightarrow \frac{HA}{EA}=\frac{BA}{HA}\Rightarrow HA^2=AE.AB(1)\)

Hoàn toàn TT ta có: \(\triangle HFA\sim \triangle CHA\Rightarrow \frac{HA}{FA}=\frac{CA}{HA}\)

\(\Rightarrow HA^2=AF.AC(2)\)

Từ \((1)(2)\Rightarrow AF.AC=AE.AB\Rightarrow \frac{AE}{AF}=\frac{AC}{AB}\)

Tam giác $AFE$ và $ABC$ có:

\(\left\{\begin{matrix} \frac{AE}{AF}=\frac{AC}{AB}\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle AFE\sim \triangle ABC(c.g.c)\)

d)

Có: \(\widehat{MEB}=\widehat{AEF}=\widehat{ACB}\) (do \(\triangle AFE\sim \triangle ABC\) )

Xét tam giác $MEB$ và $MCF$ có:

\(\left\{\begin{matrix} \text{chung góc M}\\ \widehat{MEB}=\widehat{MCF}\end{matrix}\right.\Rightarrow \triangle MEB\sim \triangle MCF(g.g)\)

\(\Rightarrow \frac{ME}{MB}=\frac{MC}{MF}\Rightarrow ME.MF=MB.MC\)

Y
5 tháng 8 2019

+ A,B thuộc đg trung trực của HM

\(\Rightarrow\left\{{}\begin{matrix}AM=AH\\BM=BH\end{matrix}\right.\)

+ ΔABH = ΔABM ( c.c.c )

\(\Rightarrow\left\{{}\begin{matrix}\widehat{AMB}=\widehat{AHB}=90^o\Rightarrow BM\perp AM\\AM=AH\end{matrix}\right.\)

+ Tương tự ta cm đc: AN = AH

=> AM = AN => ΔAMN cân tại A

=> Đg trung tuyến AI của ΔAMN cx đồng thời là đg cao

=> AI ⊥ EF

5 tháng 8 2019

cảm ơn bn

27 tháng 11 2016

a, là hcn

câu b

từ câu a => hf // và = ae

mà hf = fm

=> fm // và = ae

=> đpcm

câu c

tam giác bnh có be vừa là dcao vừa trung tuyến

=> tam giác bnh cân b

=> bn=bh (1)

cmtt => ch=cm (2)

mà bc= bh+ch

=> bc^2 = (bh+ch+)^2

= bh^2 + 2 bh.ch +ch^2 (3)

(1) (2) (3) => ... (đpcm)

lười làm đầy đủ nên vắn ắt z thôi, thông cảm nhé ^_^

a)

Ta có: MA=MD(gt)

mà A,M,D thẳng hàng

nên M là trung điểm của AD

Xét tứ giác ABDC có

M là trung điểm của đường chéo BC(AM là đường trung tuyến ứng với cạnh BC trong ΔABC)

M là trung điểm của đường chéo AD(cmt)

Do đó: ABDC là hình bình hành(dấu hiệu nhận biết hình bình hành)

Xét hình bình hành ABDC có \(\widehat{BAC}=90^0\)(ΔABC vuông tại A)

nên ABDC là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)

b) Ta có: I đối xứng với A qua BC(gt)

⇔BC là đường trung trực của AI

⇔BC⊥AI tại trung điểm của AI

mà BC⊥AH tại H(gt)

và AI, AH có điểm chung là A

nên A,H,I thẳng hàng

⇔H∈AI

mà H∈BC(gt)

nên AI\(\cap\)BC={H}

mà BC cắt AI tại trung điểm của AI(cmt)

nên H là trung điểm của AI

Xét ΔADI có

M là trung điểm của AD(cmt)

H là trung điểm của AI(cmt)

Do đó: MH là đường trung bình của ΔADI(định nghĩa đường trung bình của tam giác)

⇔MH//DI và \(MH=\frac{DI}{2}\)(định lí 2 về đường trung bình của tam giác)

Ta có: MH//DI(cmt)

mà M∈BC(gt)

vả H∈BC(gt)

nên BC//DI(đpcm)

c) Ta có: AC=DB(hai cạnh đối của hình chữ nhật ABDC)(1)

Xét ΔCAI có

CH là đường cao ứng với cạnh AI(CB⊥AI, H∈BC)

CH là đường trung tuyến ứng với cạnh AI(H là trung điểm của AI)

Do đó: ΔCAI cân tại C(định lí tam giác cân)

⇒CA=CI(2)

Từ (1) và (2) suy ra DB=CI

Xét tứ giác BIDC có DI//BC(cmt)

nên BIDC là hình thang(định nghĩa hình thang)

Xét hình thang BIDC có DB=CI(cmt)

nên BIDC là hình thang cân(dấu hiệu nhận biết hình thang cân)