các phân sồ 1/2 ; 4/3; 5/5 ; 3/4 được sắp xếp theo thứ tự từ bé đến lớn là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Gọi số cần tìm là x
Theo bài ra ta có: \(\frac{1}{2}< x< \frac{3}{4}\)
Ta có: \(\frac{1}{2}=\frac{1x6}{2x6}=\frac{6}{12}\)
\(\frac{3}{4}=\frac{3x3}{4x3}=\frac{9}{12}\)
Mà \(\frac{6}{12}< x< \frac{9}{12}\)
\(\Rightarrow x=\frac{7}{12}\)và
\(x=\frac{8}{12}\)(mà x là số tối giản),
=>\(\frac{8}{12}=\frac{2}{3}\)
Vậy \(x=\frac{7}{12}\)
và \(x=\frac{2}{3}\)
Gọi \(q_1,q_2,...,q_n\left(q_i\inℚ,\forall i=\overline{1,n}\right)\). Theo đề bài, ta có \(q_1q_2...q_n\inℤ\) và \(q_i+q_j\inℤ,\forall i\ne j;i,j=\overline{1,n}\). Không mất tính tổng quát, giả sử \(q_1< q_2< ...< q_n\)
Ta thấy \(q_1+q_2\inℤ\) và \(q_2+q_3\inℤ\) nên \(q_1-q_3\inℤ\). Mà \(q_1+q_3\inℤ\) nên nếu ta đặt \(q_1-q_3=v\) và \(q_1+q_3=u\) với \(u,v\inℤ\) thì \(q_1=\dfrac{u+v}{2};q_3=\dfrac{u-v}{2}\). Do \(q_1+q_2=\dfrac{u+v+2q_2}{2}\) và \(q_3+q_2=\dfrac{u-v+2q_2}{2}\) cũng là các số nguyên, hơn nữa \(u-v\equiv u+v\left(mod2\right)\) nên ta chỉ cần suy ra \(u+v+2q_1⋮2\) hay \(u+v\) là số chẵn, cũng tức là \(q_1=\dfrac{u+v}{2}\) là số nguyên. Một cách tương tự, ta sẽ chứng minh được \(q_i\inℤ,\forall i=\overline{1,n}\) (đpcm)
Cặp góc kề bù trong hình vẽ: \(\widehat{xOy};\widehat{zOy}\)
2,
Ot là tia phân giác \(\widehat{xOy}\Rightarrow\widehat{xOt}=\widehat{tOy}=\widehat{xOy}:2=100^o:2=50^o\)
Vì \(\widehat{zOy}\)kề bù \(\widehat{xOy}\Rightarrow\widehat{zOy}+\widehat{xOy}=180^o\Rightarrow\widehat{zoy}+100^o=180^o\Rightarrow\widehat{zOy}=80^o\)
Vì Ot' là tia phân giác \(\widehat{zOy}\Rightarrow\widehat{t'Oy}=\widehat{t'Oz}=\widehat{zOy}:2\Rightarrow80^o:2=40^o\)
Vì Oz và Ox đối nhau => tia Oy nằm giữa Oz; Ox => Oy cũng nằm giữa Ot; Ot'
\(\Rightarrow\widehat{t'Oy}+\widehat{tOy}=\widehat{tOt'}\Rightarrow40^o+50^o=\widehat{tOt'}\Rightarrow\widehat{tOt'}=90^o\)
a, Gọi d là ƯCLN( 2n-3; n-2 ). Ta có:
\(\hept{\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n-3⋮d\\2n-4⋮d\end{cases}}}\)
\(\Rightarrow\left(2n-4\right)-\left(2n-3\right)⋮d\)
\(\Rightarrow1⋮d\)
=> 2n - 3 và n - 2 nguyên tố cùng nhau <=> Phân số \(\frac{2n-3}{n-2}\)tối giản.
b, Gọi d là ƯCLN( n + 2; 3n + 5 ). Ta có:
\(\hept{\begin{cases}n+2⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+2\right)⋮d\\3n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+6⋮d\\3n+5⋮d\end{cases}}}\)
\(\Rightarrow\left(3n+6\right)-\left(3n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
=> n + 2 và 3n + 5 nguyên tố cùng nhau <=> Phân số \(\frac{n+2}{3n+5}\)tối giản.
x^2-6y^2=1
=>x^2-1=6y^2
=>y^2=\(\frac{x^2-1}{6}\)
nhân thấy y^2 thuộc Ư của x^2-1:6
=>y^2 là số chẵn
mà y là số nguyên tố=>y=2
thay vào =>x^2-1=4/6=24
=>x^2=25=>x=5
vậy x=5;y=2
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
quy đồng có
`1/2=30/60`
`4/3=80/60`
`5/5=1/1=60/60`
`3/4=45/60`
vì `30<45<60<80`
`=>1/2<3/4<5/5<4/3`
Ta có :
`1/2=(1xx2)/(2xx2)=2/4`
Vì `2/4<3/4<5/5<4/3`
Vây `1/2<3/4<5/5<4/3`