Bài IV (3,0 điểm) Cho đường tròn (O,R) và một điểm S nằm ngoài đường tròn. Từ điểm S vẽ hai tiếp tuyến SA, SB với (O) (A, B là các tiếp điểm). 1) Chứng minh tứ giác OASB là tứ giác nội tiếp. 2) Kẻ đường kính BD của đường tròn (O). Đường thẳng SD cắt đường tròn (O) tại điểm C (C khác D ). Chứng minh rằng SA.SB = SC.SD. 3) Gọi I là giao điểm của hai đoạn thẳng SO và AB . Tia CI cắt đường tròn (O) tại điểm thứ hai là M . Chứng minh tam giác SCI đồng dạng với tam giác SOD và ba điểm A, O, M là ba điểm thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc OAS+góc OBS=180 độ
=>OASB nội tiếp
b: Xét ΔMAC và ΔMBA có
góc MAC=góc MBA
góc AMC chung
=>ΔMAC đồng dạng với ΔMBA
=>MA/MB=MC/MA
=>MA^2=MB*MC
Xét tứ giác SAOB có \(\widehat{OAS}+\widehat{OBS}=180^0\)
nên SAOB là tứ giác nội tiếp
a, S A O ^ + S B O ^ = 90 0 + 90 0 = 180 0
Tứ giác OASB nội tiếp
b, M A C ^ = C B A ^ = 1 2 s đ C A ⏜
=> ∆MAC:∆MBA(g.g)
Từ đó suy ra M A 2 = M B . M C
c, Có M A 2 = M B . M C mà MA = MS => S M M S = M C M S
Chứng minh được ∆MSB:∆MCS
=>
M
B
S
^
=
C
S
M
^
hay
M
B
S
^
=
C
S
A
^
d, Chứng minh
N
A
S
^
=
M
B
S
^
(Vì cùng =
C
S
A
^
)
=> Tứ giác NAOB là từ giác nội tiếp
Chứng minh được A N O ^ = O N B ^
=> ĐPCM
a: góc SAO+góc SBO=180 độ
=>SAOB nội tiếp
c: Xét ΔSAD và ΔSCA có
góc SAD=góc SCA
góc ASD chung
=>ΔSAD đồng dạng vớiΔSCA
Để chứng minh tứ giác $EFOH$ là tứ giác nội tiếp, ta cần chứng minh $\angle EHF = \angle EOF$.
Ta có $\angle EHA = \angle HAB$ (do $SA$ và $SB$ là hai tiếp tuyến của đường tròn $O$), suy ra $\angle AHB = 90^\circ$.
Do đó, $\angle EHF = \angle EHA + \angle AHF = \angle HAB + \angle AOF = \angle EOF$ (do $OA$ và $OB$ là đường kính của đường tròn $O$).
Vậy, tứ giác $EFOH$ là tứ giác nội tiếp.
Để chứng minh $AM \cdot AB = AF \cdot AE$, ta sử dụng định lí Euclid về tích của các đoạn thẳng từ một điểm đến đường thẳng cắt nó.
Áp dụng định lí này cho đường thẳng $AH$ và đường tròn $O$, ta có:
$AM \cdot AB = AH^2 - OH^2$
$AF \cdot AE = AH^2 - HE \cdot HF$
Vì tứ giác $EFOH$ là tứ giác nội tiếp, nên $HE \cdot HF = OE \cdot OF$.
Do đó, $AM \cdot AB = AH^2 - OH^2 = AH^2 - OE \cdot OF = AF \cdot AE$.
Vậy, ta đã chứng minh được $AM \cdot AB = AF \cdot AE$.
1: góc OAS+góc OBS=90+90=180 độ
=>OASB nội tiép
2: Xét ΔSAC và ΔSDA có
góc SAC=góc SDA
góc ASC chung
=>ΔSAC đồng dạng với ΔSDA
=>SA/SD=SC/SA
=>SA^2=SD*SC=SA*SB
3: Xét (O) có
SA,SB là tiêp tuyến
=>SA=SB
mà OA=OB
nên OS là trung trực của AB
=>OS vuông góc AB tại I
=>SI*SO=SA^2=SC*SD
=>SI/SD=SC/SO
=>ΔSIC đồng dạng với ΔSDO