cho hai số x,y thỏa mãn điều kiện 3x+y=1
tìm giá trị nhỏ nhất của biểu thức A=3x2+y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có:
3 x 2 + y 2 − 2 . log 2 x − y = 1 2 1 + log 2 1 − x y ⇔ 3 x 2 + y 2 − 2 . log 2 x − y 2 = log 2 2 − 2 x y
⇔ 3 x 2 + 2 x y + y 2 − 2 + 2 x y . log 2 x − y 2 = log 2 2 − 2 x y ⇔ 3 x − y 2 . log 2 x − y = 3 2 − 2 x y . log 2 2 − 2 x y
Xét hàm số f t = 3 t . log 2 t trên khoảng 0 ; + ∞ , có f ' t = 3 t ln 3. log 2 t + 3 t t . ln 2 > 0 ; ∀ t > 0
Suy ra f t là hàm số đồng biến trên 0 ; + ∞ mà
f x − y 2 = f 2 − 2 x y ⇒ x 2 + y 2 = 2
Khi đó:
M = 2 x 3 + y 3 − 3 x y = 2 x + y x + y 2 − 3 x y − 3 x y ⇔ 2 M = 2 x + y 2 x + y 2 − 3.2 x y − 3.2 x y 2 x + y 2 x + y 2 − 3 x + y 2 + 6 − 3 x + y 2 + 6 = 2 x + y 6 − x + y 2 − 3 x + y 2 + 6 = − 2 a 3 − 3 a 2 + 12 a + 6 ,
Với a = x + y ∈ 0 ; 4
Xét hàm số f a = − 2 a 3 − 3 a 2 + 12 a + 6 trên 0 ; 4 ,
suy ra m ax 0 ; 4 f a = 13.
Vậy giá trị lớn nhất của biểu thức M là 13 2
Đáp án B
Ta có
3 x 2 + y 2 − 2 . log 2 x − y = 1 2 1 + log 2 1 − x y ⇔ 3 x 2 + y 2 − 2 . log 2 x − y 2 = log 2 2 − 2 x y
⇔ 3 x 2 + 2 x y + y 2 − 2 + 2 x y . log 2 x − y 2 = log 2 2 − 2 x y ⇔ 3 x − y 2 . log 2 x − y = 3 2 − 2 x y . log 2 2 − 2 x y
⇔ 2 M = 2 x + y 2 x + y 2 − 3.2. x y − 3.2 x y = 2 x + y 2 x + y 2 − 3 x + y 2 + 6 − 3 x + y 2 + 6
= 2 x + y 6 − x + y 2 − 3 x + y 2 + 6 = − 2 a 3 − 3 a 2 + 12 a + 6 ,
Vậy giá trị lớn nhất của biểu thức M là 13 2
Đáp án C.
Từ giả thiết ta có
ln x + y + 1 + 3 x + y + 1 = ln 3 x y + 3.3 x y (*)
Xét f t = ln t + 3 t hàm trên 0 ; + ∞ , ta có f ' t = 1 t + 3 > , ∀ t > 0
Do đó * ⇔ x + y + 1 = 3 x y ⇔ 3 x y − 1 = x + y ≥ 2 x y ⇔ 3 xy − 2 x y − 1 ≥ 0
Suy ra x y ≥ 1 ⇒ x y ≥ 1.
Ta có: 3x + y = 1 => y = 1 - 3x
=> M = 3x2 + y2 = 3x2 + (1-3x)2
= 3x2 + 1 - 6x + 9x2
= 12x2 - 6x + 1
= 12.(x2 -\(\frac{1}{2}x\) + \(\frac{1}{12}\))
= 12.((x2 - 2. \(\frac{1}{4}x\)+ \(\frac{1}{16}\)) - \(\frac{1}{16}\)+ \(\frac{1}{12}\))
= 12.((x-\(\frac{1}{4}\))2 + \(\frac{1}{48}\))
= 12. (x-\(\frac{1}{4}\))2 + \(\frac{1}{4}\)
=> M \(\ge\)\(\frac{1}{4}\)
Dấu ''='' xảy ra khi: (x - \(\frac{1}{4}\))2 = 0 => x = \(\frac{1}{4}\)
Vậy Mmin= \(\frac{1}{4}\)khi x= \(\frac{1}{4}\)
Chọn B.
P = 2 ( x 3 + y 3 ) - 3 x y (do x 2 + y 2 = 2 )
Đặt x + y = t. Ta có x 2 + y 2 = 2
Từ
P = f(t)
Xét f(t) trên [-2;2].
Ta có
Bảng biến thiên
Từ bảng biến thiên ta có max P = max f(t) = 13 2 ; min P = min f(t) = -7
Lời bình: Có thể thay bbt thay bằng
Ta có
Suy ra kết luận.