K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 7 2021

6.4

\(y=\dfrac{3}{2}\left(1+cos2x\right)-\sqrt{3}sin2x+\dfrac{1}{2}-\dfrac{1}{2}cos2x\)

\(=cos2x-\sqrt{3}sin2x+2\)

\(=2\left(\dfrac{1}{2}cos2x-\dfrac{\sqrt{3}}{2}sin2x\right)+2\)

\(=2cos\left(2x-\dfrac{\pi}{3}\right)+2\)

Do \(-1\le cos\left(2x-\dfrac{\pi}{3}\right)\le1\)

\(\Rightarrow0\le y\le4\)

\(y_{min}=0\) khi \(cos\left(2x-\dfrac{\pi}{3}\right)=-1\)

\(y_{max}=4\) khi \(cos\left(2x-\dfrac{\pi}{3}\right)=1\)

NV
17 tháng 7 2021

6.5

Ủa nhìn bài 7 thì đây là chương trình lớp 11 (pt lượng giác) chứ đâu phải lớp 10?

Vậy giải theo kiểu lớp 11 nghe:

\(y=\dfrac{2+cosx+3sinx}{2+cosx}\)

\(\Leftrightarrow2y+y.cosx=2+cosx+3sinx\)

\(\Leftrightarrow3sinx+\left(1-y\right).cosx=2y-2\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(9+\left(1-y\right)^2\ge\left(2y-2\right)^2\)

\(\Leftrightarrow\left(y-1\right)^2\le3\)

\(\Rightarrow1-\sqrt{3}\le y\le1+\sqrt{3}\)

5 tháng 10 2021

D

2 tháng 11 2021

D

C

B

D

A

NV
26 tháng 3 2022

\(\dfrac{n}{2n-1}>\dfrac{n}{2n}=\dfrac{1}{2}\)

\(\Rightarrow x_{n+1}>\dfrac{1}{2}.\left(\dfrac{x_n^2+2}{x_n}\right)\ge\dfrac{1}{2}.\dfrac{2\sqrt{2x_n^2}}{x_n}=\sqrt{2}\)

Dãy bị chặn dưới bởi \(\sqrt{2}\)

Ta sẽ chứng minh dãy đã cho là dãy giảm, hay \(x_{n+1}-x_n< 0\) với \(n>1\)

\(\Leftrightarrow\dfrac{n}{2n-1}\left(\dfrac{x_n^2+2}{x_n}\right)-x_n< 0\Leftrightarrow\left(1-n\right)x_n^2+2n< 0\)

\(\Leftrightarrow x_n^2>\dfrac{2n}{n-1}\Leftrightarrow x_n>\sqrt{\dfrac{2n}{n-1}}\)

Do \(x_n=\dfrac{n-1}{2\left(n-1\right)-1}.\left(\dfrac{x_{n-1}^2+2}{x_{n-1}}\right)=\dfrac{n-1}{2n-3}.\left(\dfrac{x_{n-1}^2+2}{x_{n-1}}\right)\ge\dfrac{2\sqrt{2}\left(n-1\right)}{2n-3}\)

Nên ta chỉ cần chứng minh: \(\dfrac{2\sqrt{2}\left(n-1\right)}{2n-3}>\sqrt{\dfrac{2n}{n-1}}\)

\(\Leftrightarrow6n-8>0\) (đúng)

Vậy dãy đã cho là dãy giảm

Dãy giảm và bị chặn dưới nên có giới hạn

Gọi giới hạn của dãy là L, lấy giới hạn 2 vế biểu thức truy hồi:

\(\lim\left(x_{n+1}\right)=\lim\left(\dfrac{n}{2n-1}.\dfrac{x_n^2+2}{x_n}\right)\Rightarrow L=\dfrac{1}{2}\left(\dfrac{L^2+2}{L}\right)\)

\(\Rightarrow L^2=2\Rightarrow L=\sqrt{2}\)

26 tháng 3 2022

em cảm ơn thầyyy

26 tháng 9 2023

a) Hàm số trên nghịch biến trên R vì:

\(1< \sqrt{5}\Rightarrow1-\sqrt{5}< 0\) 

\(\Rightarrow\) hệ số \(a< 0\)

b) Khi \(x=1+\sqrt{5}\)

\(y=\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)-1\)

\(y=1^2-\left(\sqrt{5}\right)^2-1\)

\(y=1-5-1\)

\(y=-5\)

c) Khi \(y=\sqrt{5}\) khi và chỉ khi:

\(\left(1-\sqrt{5}\right)x-1=\sqrt{5}\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)x=1+\sqrt{5}\)

\(\Leftrightarrow x=\dfrac{1+\sqrt{5}}{1-\sqrt{5}}\)

\(\Leftrightarrow x=\dfrac{\left(1+\sqrt{5}\right)^2}{1-5}\)

\(\Leftrightarrow x=-\dfrac{3+\sqrt{5}}{2}\)

NV
18 tháng 2 2022

a.

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4+x}-2}{4x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{4+x}-2\right)\left(\sqrt{4+x}+2\right)}{4x\left(\sqrt{4+x}+2\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{x}{4x\left(\sqrt{4+x}+2\right)}=\lim\limits_{x\rightarrow0}\dfrac{1}{4\left(\sqrt{4+x}+2\right)}=\dfrac{1}{4\left(\sqrt{4+0}+2\right)}=\dfrac{1}{16}\)

b.

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-2}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{x+7}-2\right)\left(\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4\right)}{\left(x-1\right)\left(\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{x-1}{\left(x-1\right)\left(\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}\)

\(=\dfrac{1}{\sqrt[3]{8^2}+2\sqrt[3]{8}+4}=\dfrac{1}{12}\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2022

Lời giải:

Gọi chiều dài và chiều rộng ban đầu là $a$ và $a-25$ (m) 

Diện tích ban đầu: $a(a-25)$

Diện tích sau thay đổi: $(a-25)(a-25)$

Theo bài ra: $a(a-25)-(a-25)(a-25)=1000$

$\Leftrightarrow (a-25)[a-(a-25)]=1000$

$\Leftrightarrow 25(a-25)=1000$

$\Leftrightarrow a-25=40$

$\Leftrightarrow a=65$ (m) 

Vậy mảnh đất ban đầu có chiều dài 65 m, chiều rộng 40 m 

a: \(\Leftrightarrow2x\left(x+2\right)+4>x^2+4x+4\)

\(\Leftrightarrow2x^2+4x-x^2-4x>0\)

=>x<>0

b: \(\Leftrightarrow3\left(1-2x\right)-24x< 4\left(1-5x\right)\)

=>3-6x-24x<4-20x

=>-30x+3<4-20x

=>-10x<1

hay x>-1/10

c: \(\Leftrightarrow x^2+6x+8>x^2+10x+16+26\)

=>6x+8>10x+42

=>-4x>34

hay x<-17/2