chứng minh rằng tồn tại số có dạng 2023^n-1 chia hết cho 2022 (với n thuộc N*)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$
Thực chất là với mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$