K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}\)

Mà 1-1/20 <1

Vậy A<1

3 tháng 4 2017

BẠn chắc chắn đúng ko đấy???

18 tháng 3 2018

Áp dụng công thức \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\). Ta có:

\(\frac{1}{2^2}< 2-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)

.  .  .   .  .

\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)

_________________________________________________

\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2-\frac{1}{50}=\frac{99}{50}\)

Vậy:A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2^{\left(đpcm\right)}\)

20 tháng 3 2018

hay thế

9 tháng 7 2018

Mọi người ơi phần a) ở (x-2)4 là kh phải mà phải là (x-2)4 nha ạ <3

10 tháng 3 2017

1/51+1/52+1/53+....+1/100>1/100+1/100+1/100+...+1/100(50 so 0)=50/100=1/2

12 tháng 8 2019

=>-13/9  < X < -11/18

=>-26/18<X<-11/18

=> X E {-25/18;-24/18;......;-11/18}

 K NHA

ỦNG HỘ MK NHA

27 tháng 8 2018

Bài 1: m=11, n=12
Bài 2:a=5, b=6, c=8

25 tháng 10 2017

Bài 1 :

(x-4)2= (x-4)4

=> (x-4)2 - (x-4)4 = 0

=>(x-4)2 . [ 1 -(x-4)2 ] =0

=> \(\left[{}\begin{matrix}\left(x-4\right)^2=0\\1-\left(x-4\right)^2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x-4=0\\\left[{}\begin{matrix}\left(x-4\right)=1\\x-4=-1\end{matrix}\right.\end{matrix}\right.\)

Sau đó tự tính nhé

Chúc bạn học tốt !

25 tháng 10 2017

cảm ơn nha

Ta có : 

         1002 > 99 . 100

         1012 > 100 . 101

            ..............

         2002 > 199. 200

=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)

=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\)    \(\left(1\right)\)

Tương tự ta có :

    A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)

=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)

=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)

=>  A > \(\frac{1}{200}\)                   \(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)Ta có : 

             \(\frac{1}{200}< A< \frac{1}{99}\)

=> ĐPCM

15 tháng 8 2020

A = \(\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+..+9\right)}{1\times2+2\times3+3\times4+...+19\times20}\)

 \(=\frac{\frac{1\times\left(1+1\right)}{2}+\frac{2\times\left(2+1\right)}{2}+\frac{3\times\left(3+1\right)}{2}...+\frac{9\times\left(9+1\right)}{2}}{1\times2+2\times3+3\times4+...+19\times20}\)

\(=\frac{\frac{1\times2}{2}+\frac{2\times3}{2}+\frac{3\times4}{2}+...+\frac{9\times10}{2}}{1\times2+2\times3+3\times4+...+9\times10}\)

\(=\frac{\frac{1}{2}\times\left(1\times2+2\times3+3\times4+...+9\times10\right)}{1\times2+2\times3+3\times4+...+9\times10}=\frac{\frac{1}{2}}{1}=\frac{1}{2}\)