\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Áp dụng công thức \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\). Ta có:

\(\frac{1}{2^2}< 2-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)

.  .  .   .  .

\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)

_________________________________________________

\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2-\frac{1}{50}=\frac{99}{50}\)

Vậy:A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2^{\left(đpcm\right)}\)

20 tháng 3 2018

hay thế

29 tháng 4 2018

Mk chỉ làm đc bài 2 thôi!

\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)

\(\Rightarrow2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)

\(\Rightarrow2S-S=6-\frac{3}{2^9}\)

\(\Rightarrow S=6-\frac{3}{2^9}\)

Chúc bạn học tốt ( sai thì đừng ném đá ) !

29 tháng 4 2018

Ta có :

A = \(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}\)\(\frac{1}{1.1}+\frac{1}{1.2}+...+\frac{1}{49.50}\)

A < \(1-1+1-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)

A < 1 - 1/50 = 49/50 < 2

Vậy A < 2

20 tháng 8 2016

(1/1×2 + 1/2×3 + ... + 1/9×10) × x < 2/1×3 + 2/3×5 + ... + 2/9×11

(1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10) × x < 1 - 1/3 + 1/3 - 1/5 + ... + 1/9 - 1/11

(1 - 1/10) × x < 1 - 1/11

9/10 × x < 10/11

x < 10/11 : 9/10

x < 10/11 × 10/9

x < 100/99

Mà x là số tự nhiên => x = 0 hoặc 1

20 tháng 8 2016

BẠN LÀ FAN CỦA HARI WON HẢ

30 tháng 3 2016

A = 1/ 1+1/22+1/32+. . . +1/50< 1+ 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5+ . . . + 1/49.50

<=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +. . . + 1/49 - 1/50

<=> A< 1 + 1 - 1/50 = 2 - 1/50 

Vậy A < 2

Nhớ k nhé bạn ^^

15 tháng 7 2018

chuvh7uuyj

7 tháng 5 2016

\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

k nha

7 tháng 5 2016

Nhân 2A lên rồi lấy 2A-A là ra kết quả

20 tháng 4 2019

Đặt \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy \(A< \frac{1}{2}\left(đpcm\right)\)

20 tháng 4 2019

Ta có: \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

19 tháng 9 2016

b) \(\frac{4}{9}x-\frac{1}{2}=\frac{-5}{9}\)

\(\Rightarrow\frac{4}{9}x=\frac{-5}{9}+\frac{1}{2}\)

\(\Rightarrow\frac{4}{9}x=\frac{-1}{18}\)

\(\Rightarrow x=\frac{-1}{18}:\frac{4}{9}\)

\(\Rightarrow x=\frac{-1}{8}\)