K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 6 2021

Kí hiệu \(P_{AMN}\) ở đây nghĩa là gì em nhỉ? Chắc là chu vi tam giác?

Tứ giác AMHN là hình chữ nhật (có 3 góc vuông) \(\Rightarrow\widehat{BAH}=\widehat{AMN}\)

Mà \(\widehat{BAH}=\widehat{ACB}\) (cùng phụ \(\widehat{ABC}\))

\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)

\(\Rightarrow\Delta_vAMN\sim\Delta_VACB\) (g.g)

\(\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}=\dfrac{MN}{BC}=\dfrac{AM+AN+MN}{AC+AB+BC}=\dfrac{14}{28}=\dfrac{1}{2}\)

Mà \(MN=AH\) (hai đường chéo hình chữ nhật)

\(\Rightarrow BC=2AH\)

Gọi K là trung điểm BC \(\Rightarrow BC=2AK\) (trung tuyến ứng với cạnh huyền bằng 1 nửa cạnh huyền)

\(\Rightarrow\) H trùng K \(\Rightarrow AH\) vừa là đường cao vừa là trung tuyến

\(\Rightarrow\Delta ABC\) vuông cân tại A

\(\Rightarrow\widehat{ABC}=45^0\)

NV
2 tháng 6 2021

undefined

a: Xét ΔANH vuông tại N và ΔAHB vuông tại H có

góc NAH chung

=>ΔANH đồng dạng với ΔAHB

b: ΔAHC vuông tại H có HM là đường cao

nên AM*AC=AH^2

ΔAHB vuông tại H có HN là đường cao

nên AN*AB=AH^2

=>AM*AC=AN*AB

=>AM/AB=AN/AC

c: AM/AB=AN/AC

=>ΔAMN đồng dạng với ΔABC

=>góc AMN=góc ABC

=>góc NMC+góc NBC=180 độ

=>BNMC là tứ giác nội tiếp

=>góc INB=góc ICM

Xét ΔINB và ΔICM có

góc INB=góc ICM

góc I chung

=>ΔINB đồng dạng với ΔICM

=>IN/IC=IB/IM

=>IN*IM=IB*IC

1: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

Do đó: AMHN là hình chữ nhật

Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

a: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

c:

Xét tứ giác ANHM có

góc ANH=góc AMH=góc MAN=90 độ

=>ANHM là hình chữ nhật

AD vuông góc MN

=>góc DAC+góc ANM=90 độ

=>góc DAC+góc AHM=90 độ

=>góc DAC+góc ABC=90 độ

=>góc DAC=góc DCA

=>DA=DC 

góc DAC+góc DAB=90 độ

góc DCA+góc DBA=90 độ

mà góc DAC=góc DCA

nên góc DAB=góc DBA

=>DA=DB

=>DB=DC

=>D là trung điểm của BC

Xét ΔAHD có

AB vừa là đường cao, vừalà trung tuyến

nên ΔAHD cân tại A

=>AB là phân giác của góc HAD(1)

Xét ΔAHB và ΔADB có

AH=AD

góc HAB=góc DAB

AB chung

=>ΔAHB=ΔADB

=>góc ADB=90 độ

=>BD vuông góc DA

Xét ΔAHE có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AC là phân giác của góc HAE(2)

Xét ΔAHC và ΔAEC có

AH=AE

góc HAC=góc EAC

AC chung

=>ΔAHC=ΔAEC

=>góc AEC=90 độ

Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

=>BD//CE

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN\(\sim\)ΔACB