Cho tam giác ABC vuông tại A, đường cao AH, kẻ HM vuông góc với AB tại M . HN vuông góc với AC tại N
a) Cm ; tứ giác AMHN là hình chữ nhật
b) Cm : tam giác ABH đồng dạng với tam giác CAH
c) Tính MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí hiệu \(P_{AMN}\) ở đây nghĩa là gì em nhỉ? Chắc là chu vi tam giác?
Tứ giác AMHN là hình chữ nhật (có 3 góc vuông) \(\Rightarrow\widehat{BAH}=\widehat{AMN}\)
Mà \(\widehat{BAH}=\widehat{ACB}\) (cùng phụ \(\widehat{ABC}\))
\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)
\(\Rightarrow\Delta_vAMN\sim\Delta_VACB\) (g.g)
\(\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}=\dfrac{MN}{BC}=\dfrac{AM+AN+MN}{AC+AB+BC}=\dfrac{14}{28}=\dfrac{1}{2}\)
Mà \(MN=AH\) (hai đường chéo hình chữ nhật)
\(\Rightarrow BC=2AH\)
Gọi K là trung điểm BC \(\Rightarrow BC=2AK\) (trung tuyến ứng với cạnh huyền bằng 1 nửa cạnh huyền)
\(\Rightarrow\) H trùng K \(\Rightarrow AH\) vừa là đường cao vừa là trung tuyến
\(\Rightarrow\Delta ABC\) vuông cân tại A
\(\Rightarrow\widehat{ABC}=45^0\)
a: Xét ΔANH vuông tại N và ΔAHB vuông tại H có
góc NAH chung
=>ΔANH đồng dạng với ΔAHB
b: ΔAHC vuông tại H có HM là đường cao
nên AM*AC=AH^2
ΔAHB vuông tại H có HN là đường cao
nên AN*AB=AH^2
=>AM*AC=AN*AB
=>AM/AB=AN/AC
c: AM/AB=AN/AC
=>ΔAMN đồng dạng với ΔABC
=>góc AMN=góc ABC
=>góc NMC+góc NBC=180 độ
=>BNMC là tứ giác nội tiếp
=>góc INB=góc ICM
Xét ΔINB và ΔICM có
góc INB=góc ICM
góc I chung
=>ΔINB đồng dạng với ΔICM
=>IN/IC=IB/IM
=>IN*IM=IB*IC
1: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
c:
Xét tứ giác ANHM có
góc ANH=góc AMH=góc MAN=90 độ
=>ANHM là hình chữ nhật
AD vuông góc MN
=>góc DAC+góc ANM=90 độ
=>góc DAC+góc AHM=90 độ
=>góc DAC+góc ABC=90 độ
=>góc DAC=góc DCA
=>DA=DC
góc DAC+góc DAB=90 độ
góc DCA+góc DBA=90 độ
mà góc DAC=góc DCA
nên góc DAB=góc DBA
=>DA=DB
=>DB=DC
=>D là trung điểm của BC
Xét ΔAHD có
AB vừa là đường cao, vừalà trung tuyến
nên ΔAHD cân tại A
=>AB là phân giác của góc HAD(1)
Xét ΔAHB và ΔADB có
AH=AD
góc HAB=góc DAB
AB chung
=>ΔAHB=ΔADB
=>góc ADB=90 độ
=>BD vuông góc DA
Xét ΔAHE có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Xét ΔAHC và ΔAEC có
AH=AE
góc HAC=góc EAC
AC chung
=>ΔAHC=ΔAEC
=>góc AEC=90 độ
Từ (1), (2) suy ra góc DAE=2*90=180 độ
=>D,A,E thẳng hàng
=>BD//CE
Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN\(\sim\)ΔACB