Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
AH=15*20/25=12(cm)
c: ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2=AM*AB
a, Xét tam giác ABH và tam giác CBA ta có
^B _ chung
^AHB = ^BAC = 900
Vậy tam giác ABH ~ tam giác CBA (g.g)
\(\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow AB^2=BH.BC\)(*)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=25cm\)
Lại có (*) => \(BH=\dfrac{AB^2}{BC}=9cm\)
=> CH = BC - BH = 16 cm
c, Xét tam giác AHM và tam giác ABH có
^A _ chung
^AMH = ^AHB = 900
Vậy tam giác AHM ~ tam giác ABH (g.g)
\(\dfrac{AH}{AB}=\dfrac{AM}{AH}\Rightarrow AH^2=AM.AB\)(1)
Xét tam giác AHN và tam giác ACH có
^A _ chung
^ANH = ^AHC = 900
Vậy tam giác AHN ~ tam giác ACH (g.g)
\(\dfrac{AH}{AC}=\dfrac{AN}{AH}\Rightarrow AH^2=AN.AC\)(2)
Từ (1) ; (2) ta có AM . AB = AN . AC
a: Xét ΔANH vuông tại N và ΔAHB vuông tại H có
góc NAH chung
=>ΔANH đồng dạng với ΔAHB
b: ΔAHC vuông tại H có HM là đường cao
nên AM*AC=AH^2
ΔAHB vuông tại H có HN là đường cao
nên AN*AB=AH^2
=>AM*AC=AN*AB
=>AM/AB=AN/AC
c: AM/AB=AN/AC
=>ΔAMN đồng dạng với ΔABC
=>góc AMN=góc ABC
=>góc NMC+góc NBC=180 độ
=>BNMC là tứ giác nội tiếp
=>góc INB=góc ICM
Xét ΔINB và ΔICM có
góc INB=góc ICM
góc I chung
=>ΔINB đồng dạng với ΔICM
=>IN/IC=IB/IM
=>IN*IM=IB*IC
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
a: Xét ΔANH vuông tại N và ΔAHC vuông tại H có
góc NAH chung
Do đó: ΔANH\(\sim\)ΔAHC
b: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Kí hiệu \(P_{AMN}\) ở đây nghĩa là gì em nhỉ? Chắc là chu vi tam giác?
Tứ giác AMHN là hình chữ nhật (có 3 góc vuông) \(\Rightarrow\widehat{BAH}=\widehat{AMN}\)
Mà \(\widehat{BAH}=\widehat{ACB}\) (cùng phụ \(\widehat{ABC}\))
\(\Rightarrow\widehat{AMN}=\widehat{ACB}\)
\(\Rightarrow\Delta_vAMN\sim\Delta_VACB\) (g.g)
\(\Rightarrow\dfrac{AM}{AC}=\dfrac{AN}{AB}=\dfrac{MN}{BC}=\dfrac{AM+AN+MN}{AC+AB+BC}=\dfrac{14}{28}=\dfrac{1}{2}\)
Mà \(MN=AH\) (hai đường chéo hình chữ nhật)
\(\Rightarrow BC=2AH\)
Gọi K là trung điểm BC \(\Rightarrow BC=2AK\) (trung tuyến ứng với cạnh huyền bằng 1 nửa cạnh huyền)
\(\Rightarrow\) H trùng K \(\Rightarrow AH\) vừa là đường cao vừa là trung tuyến
\(\Rightarrow\Delta ABC\) vuông cân tại A
\(\Rightarrow\widehat{ABC}=45^0\)