K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
20 tháng 1 2022
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABC}\) chung
Do đó; ΔAHB\(\sim\)ΔCAB
Suy ra: AB/CB=HB/AB
hay \(AB^2=HB\cdot BC\)
b: BC=25cm
BH=225:25=9(cm)
CH=25-9=16(cm)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
a, Xét tam giác ABH và tam giác CBA ta có
^B _ chung
^AHB = ^BAC = 900
Vậy tam giác ABH ~ tam giác CBA (g.g)
\(\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow AB^2=BH.BC\)(*)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=25cm\)
Lại có (*) => \(BH=\dfrac{AB^2}{BC}=9cm\)
=> CH = BC - BH = 16 cm
c, Xét tam giác AHM và tam giác ABH có
^A _ chung
^AMH = ^AHB = 900
Vậy tam giác AHM ~ tam giác ABH (g.g)
\(\dfrac{AH}{AB}=\dfrac{AM}{AH}\Rightarrow AH^2=AM.AB\)(1)
Xét tam giác AHN và tam giác ACH có
^A _ chung
^ANH = ^AHC = 900
Vậy tam giác AHN ~ tam giác ACH (g.g)
\(\dfrac{AH}{AC}=\dfrac{AN}{AH}\Rightarrow AH^2=AN.AC\)(2)
Từ (1) ; (2) ta có AM . AB = AN . AC