Cho tam giác ABC có AB = AC. Mlà một điểm nằm giữa A và C. N là điểm nằm giữa A và B sao cho CM = BN. a. Chứng minh rằng đoạn thẳng BM cắt đoạn thẳng CN. b. Chứng minh rằng góc B bằng góc C và BM = CN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMBE vuông tại E và ΔNCF vuông tại F có
MB=CN
\(\widehat{MBE}=\widehat{NCF}\left(=\widehat{ACB}\right)\)
Do đó: ΔMBE=ΔNCF
Suy ra: ME=NF
Xét ΔMEI vuông tại E và ΔNFI vuông tại F có
ME=NF
\(\widehat{EMI}=\widehat{FNI}\)
Do đó: ΔMEI=ΔNFI\(\left(cgv-gnk\right)\)
Suy ra: IE=IF
b: Ta có: CD=CN
mà CN=MB
nên MB=DC
Xét ΔBAC có
\(\dfrac{MB}{BA}=\dfrac{CD}{AC}\)
nên MD//BC
Xét tứ giác BMDC có MD//BC
nên BMDC là hình thang
mà \(\widehat{MBC}=\widehat{DCB}\)
nên BMDC là hình thang cân
a: góc ABC+góc ACB=180-60=120 độ
=>góc OBC+góc OCB=1/2*120=60 độ
góc BOC=180-60=120 độ
b: Kẻ OK là phân giác của góc BOC
=>góc BOK=góc COK=120/2=60 độ
góc NOB+góc BOC=180 độ(kề bù)
=>góc NOB=180-120=60 độ
=>góc MOC=góc NOB=60 độ
=>góc NOB=góc BOK=góc KOC=góc MOC
Xét ΔONB và ΔOKB có
góc NOB=góc KOB
OB chung
góc OBN=góc OBK
=>ΔONB=ΔOKB
=>ON=OK
Xét ΔOKC và ΔOMC có
góc KOC=góc MOC
OC chung
góc KCO=góc MCO
=>ΔOKC=ΔOMC
=>OK=OM
=>ON=OM
c: BN+CM
=BK+KC
=BC
a) Ta có
+)AM=AB-BM=6-3,75=2,25
+)MN//BC => \(\frac{AN}{AC}=\frac{AM}{AB}\)=> \(\frac{AN}{8}=\frac{2,25}{6}=\frac{3}{8}\)
=> AN=3(cm)
CN=AC-AN=8-3=5(cm)
b) +)MK//BI => \(\frac{MK}{BI}=\frac{AK}{AI}\left(1\right)\)
+) NK//CI => \(\frac{NK}{CI}=\frac{AK}{AI}\left(2\right)\)
(1)(2) => \(\frac{MK}{BI}=\frac{NK}{CI}\)mà MK=NK (K là trung điểm MN)
=> BI=CI => I là trung điểm BC
c) \(\Delta\)ABC vuông tại A
=> BC2=AB2+AC2=62+82=102 (Định lý Pytago)
=> BC=10cm
Ta có: \(\hept{\begin{cases}\frac{AN}{CN}=\frac{3}{5}\\\frac{AB}{BC}=\frac{6}{10}=\frac{3}{5}\end{cases}\Rightarrow\frac{AN}{CN}=\frac{AB}{AC}=\frac{3}{5}}\)
=> BN là phân giác \(\widehat{ABC}\)