K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng m: Đoạn thẳng [N, E] Đoạn thẳng n: Đoạn thẳng [B, E] Đoạn thẳng p: Đoạn thẳng [N, M] Đoạn thẳng q: Đoạn thẳng [N, B] Đoạn thẳng r: Đoạn thẳng [A, K] O = (0.22, 2.54) O = (0.22, 2.54) O = (0.22, 2.54) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm N: Điểm trên j Điểm N: Điểm trên j Điểm N: Điểm trên j Điểm D: Giao điểm của i, k Điểm D: Giao điểm của i, k Điểm D: Giao điểm của i, k Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm K: Trung điểm của E, D Điểm K: Trung điểm của E, D Điểm K: Trung điểm của E, D Điểm I: Giao điểm của g, p Điểm I: Giao điểm của g, p Điểm I: Giao điểm của g, p

a. Do AN và AM là hai tia phân giác nên \(AN⊥AM\). Vậy thì MN là đường kính của đường tròn O.

Theo tính chất đường kính dây cung, MN vuông góc với BC tại trung điểm BC.

b. Do tam giác AED vuông tại A, K là trung điểm DE nên \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}\)(Góc có đỉnh bên ngoài đường tròn)

Lại có MN là đường kính nên \(sđ\widebat{NB}+sđ\widebat{BM}=sđ\widebat{NC}+sđ\widebat{CM}\);

Lại do AM là phân giác nên \(\widehat{BAM}=\widehat{CAM}\Rightarrow sđ\widebat{BM}=sđ\widebat{CM}\) (Góc nội tiếp)

Vậy thì \(sđ\widebat{NB}=sđ\widebat{NC}\)

Khi đó \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{NB}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{AN}}{2}=\widehat{ABN}\) (góc nội tiếp).

20 tháng 1 2016

oài 3 bài này khó kinh khủng 

26 tháng 2 2021

a) Kẻ Ax là tiếp tuyến của đường tròn (O)  

=> Ax ⊥ AO tại A (1)

Ta có :  \(\widehat{xAB} = \widehat{ABC} \) ( góc tạo bởi tiếp tuyến và dây và góc nội tiếp chắn \(\widehat{AC}\) ) 

Lại có :  \(\begin{cases} \widehat{ABC} + \widehat{ACB} + \widehat{BAC} = 180^o\\ \widehat{ADQ} + \widehat{AQD} + \widehat{BAC} = 180^o \end{cases} \)

Mà \(\widehat{AQD} = \widehat{ACB}\) ( 2 góc nội tiếp cùng chắn cung \(\widehat{BD} \) ) 

=> \(\widehat{ABC} = \widehat{ADB} \)  => Ax // QD (2) 

Từ (1) và (2) => QD ⊥ AO 

22 tháng 9 2019

A B C I O M N K J

Gọi giao điểm của hai tia MA và BI là J.

Ta thấy I là tâm nội tiếp \(\Delta\)ABC, CI cắt (ABC) tại M. Suy ra M là điểm chính giữa cung AB không chứa C.

Từ đó ta có biến đổi góc ^AJB = 1800 - ^AMB - ^IBM = (^ACB - ^ABC)/2 = ^AKB

Suy ra tứ giác ABKJ nội tiếp. Mà BJ là phân giác góc ABK nên (JA = (JK hay JA = JK

Đồng thời IM // JK (Vì ^JKB = ^BAM = ^BCM)

Mặt khác ^MAI = ^MIA = (^BAC + ^ACB)/2 nên MI = MA. Áp dụng ĐL Thales ta có:

\(\frac{MI}{KJ}=\frac{AM}{AJ}=\frac{NI}{NJ}\). Kết hợp với ^MIN = ^KJN (IM // JK) suy ra \(\Delta\)MIN ~ \(\Delta\)KJN (c.g.c)

Suy ra ^MNI = ^KNJ. Lại có I,N,J thẳng hàng, dẫn đến M,N,K thẳng hàng (đpcm).

28 tháng 11 2016

xin lỗi mình mới học lớp 4