K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng m: Đoạn thẳng [N, E] Đoạn thẳng n: Đoạn thẳng [B, E] Đoạn thẳng p: Đoạn thẳng [N, M] Đoạn thẳng q: Đoạn thẳng [N, B] Đoạn thẳng r: Đoạn thẳng [A, K] O = (0.22, 2.54) O = (0.22, 2.54) O = (0.22, 2.54) Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm E: Giao điểm của j, k Điểm N: Điểm trên j Điểm N: Điểm trên j Điểm N: Điểm trên j Điểm D: Giao điểm của i, k Điểm D: Giao điểm của i, k Điểm D: Giao điểm của i, k Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm M: Giao điểm của c, i Điểm K: Trung điểm của E, D Điểm K: Trung điểm của E, D Điểm K: Trung điểm của E, D Điểm I: Giao điểm của g, p Điểm I: Giao điểm của g, p Điểm I: Giao điểm của g, p

a. Do AN và AM là hai tia phân giác nên \(AN⊥AM\). Vậy thì MN là đường kính của đường tròn O.

Theo tính chất đường kính dây cung, MN vuông góc với BC tại trung điểm BC.

b. Do tam giác AED vuông tại A, K là trung điểm DE nên \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}\)(Góc có đỉnh bên ngoài đường tròn)

Lại có MN là đường kính nên \(sđ\widebat{NB}+sđ\widebat{BM}=sđ\widebat{NC}+sđ\widebat{CM}\);

Lại do AM là phân giác nên \(\widehat{BAM}=\widehat{CAM}\Rightarrow sđ\widebat{BM}=sđ\widebat{CM}\) (Góc nội tiếp)

Vậy thì \(sđ\widebat{NB}=sđ\widebat{NC}\)

Khi đó \(\widehat{EAK}=\widehat{AEK}=\frac{sđ\widebat{NC}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{NB}-sđ\widebat{AB}}{2}=\frac{sđ\widebat{AN}}{2}=\widehat{ABN}\) (góc nội tiếp).

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
20 tháng 1 2016

oài 3 bài này khó kinh khủng 

26 tháng 2 2021

a) Kẻ Ax là tiếp tuyến của đường tròn (O)  

=> Ax ⊥ AO tại A (1)

Ta có :  \(\widehat{xAB} = \widehat{ABC} \) ( góc tạo bởi tiếp tuyến và dây và góc nội tiếp chắn \(\widehat{AC}\) ) 

Lại có :  \(\begin{cases} \widehat{ABC} + \widehat{ACB} + \widehat{BAC} = 180^o\\ \widehat{ADQ} + \widehat{AQD} + \widehat{BAC} = 180^o \end{cases} \)

Mà \(\widehat{AQD} = \widehat{ACB}\) ( 2 góc nội tiếp cùng chắn cung \(\widehat{BD} \) ) 

=> \(\widehat{ABC} = \widehat{ADB} \)  => Ax // QD (2) 

Từ (1) và (2) => QD ⊥ AO 

3 tháng 2 2020

Gọi K đối xứng với F qua M.

Tứ giác FBKC là hình bình hành\(\Rightarrow FC//BK\)

\(\Rightarrow\widehat{BKM}=\widehat{MEB};\widehat{BKM}=\widehat{MFA}\).Mà \(\widehat{AEM}=\widehat{MFA}\Rightarrow\widehat{BKM}=\widehat{MEB}\Rightarrow\)Tứ giác BMKE nội tiếp

\(\Rightarrow\widehat{BEK}=\widehat{DAE};\widehat{BEK}=\widehat{FMD}=\widehat{FAD}=\widehat{DAE}\)

\(\Rightarrow\widehat{BEK}=\widehat{DAE}\Rightarrow AD//EK\)

Do N là trung điểm của EF, M là trung điểm của FK \(\Rightarrow MN//EK\)

\(\Rightarrow MN//AD\left(đpcm\right)\)

ủa ko hiểu 

giờ mình có l 6