K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2023

phân tích đa thức thành nhân tử

 

17 tháng 12 2020

Xét hiệu \(x^4-15x+14=\left(x-1\right)\left(x-2\right)\left(x^2+3x+7\right)\le0\)

\(\Rightarrow x^4\le15x-14\).

Tương tự: \(y^4\le15y-14;z^4\le15z-14\).

Cộng vế với vế của các bất đẳng thức trên kết hợp giả thiết x + y + z = 5 ta có:

\(P=x^4+y^4+z^4\le15\left(x+y+z\right)-42=33\).

Đẳng thức xảy ra khi và chỉ khi (x, y, z) = (2, 2, 1) và các hoán vị.

Vậy...

17 tháng 12 2020

cho mình hỏi làm thế nào để bạn tìm ra đc cách xét hiệu x4-15x+14

có phưong pháp nào ko

nếu có thì bn giúp mk vs nhé

Bài 3: 

\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)

\(=\left(x^2-9\right)\left(x^2-1\right)+15\)

\(=x^4-10x^2+9+15\)

\(=x^4-10x^2+24\)

\(=\left(x^2-4\right)\left(x^2-6\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)

 

20 tháng 3 2018

a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\)    và   \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)

=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)

=> x-1=0

=> x=1

\(|\frac{1}{2}x-3y+1|=0\)

=> \(\frac{1}{2}.1-3y+1=0\)

=> \(\frac{1}{2}-3y=-1\)

=> \(3y=\frac{1}{2}-\left(-1\right)\)

=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)

=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)

b) Có: \(x^2\le y;y^2\le z;z\le x\)

=> \(x^4\le y^2\) và \(y^2\le x\)

=> \(x^4\le x\)

=> \(x^4=x\)

=> \(x\in\left\{0;1\right\}\)

Có: \(x^4\le y^2\)\(y^2\le z\)và \(z\le x\)

=> \(x^4\le z\le x\)

Mà \(x^4=x\)

=> \(x^4=x=z\)

=> \(z\in\left\{0;1\right\}\)

Có: \(x^4\le y^2\)và \(y^2\le z\)

=> \(x^4\le y^2\le z\)

Mà \(x^4=x=z\)

=> \(x^4=y^2\)

=> \(y^2\in\left\{0;1\right\}\)

=> \(y\in\left\{0;1\right\}\)

c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)

=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)

\(=\frac{x+43}{6}\)

..........Chỗ này?! Có gì đó sai sai.........

Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi

d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)

=> \(ab^2c+abc^2=2+\left(-2\right)=0\)

=> \(abc\left(b+c\right)=0\)

Mà a;b;c là 3 số khác 0

=> \(abc\ne0\)

=> \(b+c=0\)

=> \(b=-c\)

\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)

=> \(abc\left(a+b-c\right)=0\)

\(abc\ne0\)

=> \(a+b-c=0\)

\(a^2bc-abc^2=-4-\left(-2\right)=-2\)

=> \(abc\left(a-c\right)=-2\)

Mà \(abc\ne0\)

=>\(a-c=-2\)

Có \(a+b-c=0\)

=> \(\left(a-c\right)+b=0\)

=> \(-2+b=0\)

=> \(b=2\)

 \(b=-c=2\)=> \(c=-2\)

=> \(a-\left(-2\right)=-2\)

=> \(a+2=-2\)

=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra  -__-

Mỏi tay quáááá

13 tháng 7 2023

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz\) Thay x+y+z=0 vào

\(\Rightarrow0=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\) (1)

Ta có

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\) (2)

Bình phương 2 vế của (1)

\(\left(x^2+y^2+z^2\right)^2=4\left(xy+yz+xz\right)^2\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2+2xy^2z+2xyz^2+2x^2yz\right)\)

\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2=4\left[x^2y^2+y^2z^2+x^2z^2+2xyz\left(x+y+z\right)\right]\)

Do x+y+z=0 nên

\(\left(x^2+y^2+z^2\right)^2=4\left(x^2y^2+y^2z^2+x^2z^2\right)\)

\(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{2}=2x^2y^2+2y^2z^2+2x^2z^2\) (3)

Thay (3) vào (2)

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+\dfrac{\left(x^2+y^2+z^2\right)^2}{2}\)

\(\Rightarrow2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2\) (đpcm)

 

 

 

NV
15 tháng 12 2020

a.

\(1-4x^2=\left(1-2x\right)\left(1+2x\right)\)

b.

\(8-27x^3=\left(2\right)^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)

c.

\(27+27x+9x^2+x^3=x^3+3.x^2.3+3.3^2.x+3^3\)

\(=\left(x+3\right)^3\)

d.

\(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)

e.

\(x^2-y^2-5x+5y=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-5\right)\)

f.

\(x^2-6x+9-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

1 tháng 7 2021

g. 10x(x-y)-6y(y-x)

=10x(x-y)+6y(x-y)

=(x-y)(10x+6y)

h.x2-4x-5

=(x-5)(x+1)

i.x4-y= (x2-y2)(x2+y2)

 

 

26 tháng 4 2017

bài 1 áp dụng bất đẳng thức Cô-si swatch ta có:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}\)=1

dấu bằng xảy ra khi nào bạn tự tìm nh

12 tháng 12 2018

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

12 tháng 12 2018

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!