K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2023

A = \(\dfrac{n+2}{n-1}=\dfrac{n-1+3}{n-1}=1+\dfrac{3}{n-1}\)

Để A là số nguyên thì \(3⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(3\right)\)

\(\Leftrightarrow n-1\in\left\{1;3;-1;-3\right\}\)

\(\Leftrightarrow n\in\left\{2;4;0;-2\right\}\)

11 tháng 2 2023

có: A=\(\dfrac{n+2}{n-1}\)=\(\dfrac{n-1+3}{n-1}\)=\(1+\dfrac{3}{n-1}\)

Để A nhận giá trị nguyên thì 3/n-1 có giá trị nguyên

=> n-1ϵƯ(3)

Ta có bảng sau:

n-1 1 3 -1 -3
n 2 4 0 -2

 

Vậy nϵ\(\left\{-2;0;2;4\right\}\)