Tính A=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).........\left(\frac{1}{100^2}-1\right)\)
(tính và nhập phân số dưới dạng phân số tối giản)
giúp mình đi nhớ giải chi tiết
ngày mai mik thi tỉnh rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A chắc chắn phải dương, vì cả tử và mẫu đều cùng dấu dương.
Do đó khi 2A lớn nhất thì A cũng lớn nhất.
\(2A=\frac{2\left|x\right|+10}{2\left|x\right|+3}=1+\frac{7}{2\left|x\right|+3}\)
Để 2A lớn nhất thì \(\frac{7}{2\left|x\right|+3}\) lớn nhất. 7 là số nguyên dương nên để phân số này lớn nhất thì 2|x|+3 là số dương bé nhất có thể.
|x| > 0
\(\Rightarrow\)2|x| > 0
\(\Rightarrow\)2|x|+ 3 > 3
\(\Rightarrow2A\) lớn nhất là \(1+\frac{7}{3}=\frac{10}{3}\)
Do đó A lớn nhất là \(\frac{10}{3}:2=\frac{5}{3}\)
Ta có: \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)....\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}...\frac{779}{780}\)
\(=\frac{4}{6}.\frac{10}{12}....\frac{1558}{1560}\)
\(=\frac{1.4.2.5....38.41}{2.3.3.4....39.40}=\frac{\left(1.2.3..38\right)\left(4.5...41\right)}{\left(2.3.4...39\right)\left(3...40\right)}=\frac{41}{39.3}=\frac{41}{117}\)
\(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)........\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}........\frac{779}{780}\)
\(=\frac{4}{6}.\frac{10}{12}\frac{18}{20}.\frac{28}{30}.........\frac{1558}{1560}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...............\frac{38.41}{39.40}\)
\(=\frac{\left(1.2.3.4......38\right)\left(4.5.6.7..........41\right)}{\left(2.3.4.5.........39\right)\left(3.4.5.6.........40\right)}\)
\(=\frac{1.41}{39.3}\)
\(=\frac{41}{117}\)
Vậy \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)........\left(1-\frac{1}{780}\right)=\frac{41}{117}\)
A= \(\frac{1}{31}.\left[\frac{5}{31}\left(9-\frac{1}{2}\right)-\frac{17}{2}\left(4+\frac{1}{5}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
= \(\frac{1}{31}.\left(\frac{5}{31}.\frac{17}{2}-\frac{17}{2}.\frac{21}{5}\right)+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{1}{31}.\left[\frac{17}{2}.\left(\frac{5}{31}-\frac{21}{5}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{1}{31}.\left[\frac{17}{2}.\left(\frac{-626}{155}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{1}{31}.\left(\frac{-5321}{155}\right)+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{-5321}{4805}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{-5321}{4805}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{30.31}\)
=\(\frac{-5321}{4805}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{30}-\frac{1}{31}\)
=\(\frac{-5321}{4805}+\frac{1}{1}-\frac{1}{31}\)
=\(\frac{-5321}{4805}+\frac{30}{31}\)
=\(\frac{-671}{4805}\)
thi gì vậy bạn
Thi violympic cấp tỉnh bảng B đó bạn!