Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= \(\frac{1}{31}.\left[\frac{5}{31}\left(9-\frac{1}{2}\right)-\frac{17}{2}\left(4+\frac{1}{5}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
= \(\frac{1}{31}.\left(\frac{5}{31}.\frac{17}{2}-\frac{17}{2}.\frac{21}{5}\right)+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{1}{31}.\left[\frac{17}{2}.\left(\frac{5}{31}-\frac{21}{5}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{1}{31}.\left[\frac{17}{2}.\left(\frac{-626}{155}\right)\right]+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{1}{31}.\left(\frac{-5321}{155}\right)+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{-5321}{4805}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{930}\)
=\(\frac{-5321}{4805}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{30.31}\)
=\(\frac{-5321}{4805}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{30}-\frac{1}{31}\)
=\(\frac{-5321}{4805}+\frac{1}{1}-\frac{1}{31}\)
=\(\frac{-5321}{4805}+\frac{30}{31}\)
=\(\frac{-671}{4805}\)
Ta có: \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)....\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}...\frac{779}{780}\)
\(=\frac{4}{6}.\frac{10}{12}....\frac{1558}{1560}\)
\(=\frac{1.4.2.5....38.41}{2.3.3.4....39.40}=\frac{\left(1.2.3..38\right)\left(4.5...41\right)}{\left(2.3.4...39\right)\left(3...40\right)}=\frac{41}{39.3}=\frac{41}{117}\)
\(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)........\left(1-\frac{1}{780}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}........\frac{779}{780}\)
\(=\frac{4}{6}.\frac{10}{12}\frac{18}{20}.\frac{28}{30}.........\frac{1558}{1560}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{4.7}{5.6}...............\frac{38.41}{39.40}\)
\(=\frac{\left(1.2.3.4......38\right)\left(4.5.6.7..........41\right)}{\left(2.3.4.5.........39\right)\left(3.4.5.6.........40\right)}\)
\(=\frac{1.41}{39.3}\)
\(=\frac{41}{117}\)
Vậy \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)........\left(1-\frac{1}{780}\right)=\frac{41}{117}\)
Bài 1:
a) \(\frac{\left(-3\right)}{16}+\frac{1}{15}=\frac{-45}{240}+\frac{16}{240}\)
\(=\frac{-29}{240}\)
b)\(\frac{\left(-15\right)}{24}-\frac{\left(-2\right)}{6}=\frac{\left(-15\right)}{24}-\frac{-8}{24}\)
\(=\frac{-7}{24}\)
c) \(\frac{\left(-16\right)}{18}\cdot\frac{36}{\left(-40\right)}=\frac{\left(-8\right)}{9}\cdot\frac{\left(-9\right)}{10}\)
\(=\frac{\left(-80\right)}{90}\cdot\frac{\left(-81\right)}{90}\)
\(=\frac{4}{5}\)
d)\(\frac{\left(-17\right)}{30}:\frac{34}{60}=\frac{\left(-17\right)}{30}:\frac{17}{30}\)
\(=\frac{\left(-17\right)}{30}\cdot\frac{30}{17}\)
\(=-1\)
Bài 2:
a) \(1\frac{3}{5}+2\frac{1}{6}=\frac{8}{5}+\frac{13}{6}=\frac{48}{30}+\frac{65}{30}\)
\(=\frac{113}{30}\)
b) \(3\frac{1}{7}-1\frac{1}{8}=\frac{22}{7}-\frac{9}{8}=\frac{176}{56}-\frac{63}{56}\)
\(=\frac{113}{56}\)
c) \(3\frac{1}{6}\cdot2\frac{1}{4}=\frac{19}{6}\cdot\frac{9}{4}=\frac{57}{8}\)
d) \(4\frac{1}{5}:3\frac{6}{7}=\frac{21}{5}:\frac{27}{7}=\frac{21}{5}\cdot\frac{7}{27}\)
\(=\frac{49}{45}\)
a \(\frac{-3}{16}+\frac{1}{15}=\frac{-45}{240}+\frac{16}{240}=\frac{-29}{240}\)
b \(\frac{-15}{24}-\frac{-2}{6}=\frac{-15}{24}-\frac{-8}{24}=\frac{-7}{24}\)
c \(\frac{-16}{18}.\frac{36}{-40}=\frac{4}{5}\)
d \(\frac{-17}{30}:\frac{34}{60}=\frac{-17}{30}.\frac{60}{34}=-1\)
bai 2
\(1\frac{3}{5}+2\frac{1}{6}=\frac{8}{5}+\frac{13}{6}=\frac{113}{30}\)
\(3\frac{1}{7}-1\frac{1}{8}=\frac{22}{7}-\frac{9}{8}=\frac{113}{56}\)
c \(3\frac{1}{6}.2\frac{1}{4}=\frac{19}{6}.\frac{9}{4}=\frac{57}{8}\)
d \(4\frac{1}{5}:3\frac{6}{7}=\frac{21}{5}:\frac{27}{7}=\frac{21}{5}.\frac{7}{27}=\frac{147}{135}\)
B = \(\frac{2^3.5.7.5^2.7^3}{\left(2.5.7^2\right)^2}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=\frac{2.5.1}{1.1.1}=10\)
C = \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)=\frac{1}{2}\left(\frac{33}{99}-\frac{1}{99}\right)=\frac{1}{2}.\frac{32}{99}=\frac{16}{99}\)