cmr : tong cua hai so le lien tiep thi chia het cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi ba so chan lien tiep la \(a;a+2;a+4\)
\(\Rightarrow a+a+2+a+4=3a+6\)
Vì a là số chẵn nên a chia hết cho 2 \(\Rightarrow3a⋮6\)
\(\Rightarrow3a+6⋮6\)
Vậy tổng ba số chẵn liên tiêp chia hết cho 6
Số chẵn có dạng: 2n
Tổng của 5 số chẵn liên tiếp là:
S = 2n + 2n + 2 + 2n + 4 + 2n + 6 + 2n + 8 = 10n + 20
S = 10.(n +2)⋮ 10(đpcm)
Số lẻ có dạng: 2n + 1
5 số lẻ liên tiếp có dạng:
S = 2n + 1 + 2n + 3 + 2n + 5 + 2n + 7 + 2n + 9
S = 10n + 15
S = 10.(n + 1) + 5
⇒ S ⋮ 10 dư 5 (đpcm)
a) Có dạng: 2k + 2k + 2 + 2k + 4 = 6k + 6 = 6(k+1)
chia hết cho 6 (dpcm)
b) Có dạng: 2k + 1 + 2k + 3 + 2k + 5 = 6k + 9 = 2(3k + 4) + 1
không chia hết cho 6 (dpcm)
a. goi ba so tu nhien chan do la a nhan 2, a nhan 2 +2,a nhan 2 +4
theo bai ra ta co : tong ba so chan lien tiep la : a*2+a*2+2+a*2+4 = ( a*2+a*2+a*2) + (2+4)= a*6+6=6*(a+1)
vi 6 chia het cho 6 nen 6*(a+1)chia het cho 6
Gọi 3 số liên tiếp lần lượt là: a;a+1;a+2
Ta có a+(a+1)+(a+2)=(a+a+a)+(1+2)=3a+3 chia hết cho 3(điều phải chứng minh)
Gọi 4 số tự nhiên liên tiếp lần lượt là: a;a+1;a+2;a+3
Ta có: a+(a+1)+(a+2)+(a+3)=(a+a+a+a)+(1+2+3)=4a+6 không chia hết cho 4(diều phải chứng minh)
Tong cua 3 so nguyen lien tiep chia het cho 3
Gọi 3 số nguyên liên tiếp là a, a+1, a+2 với a\(\in\)Z
Ta có a + a+1 + a+2 = 3a + 3
Vì 3⋮3 và 3a⋮3 nên tong cua 3 so nguyen lien tiep chia het cho 3
Tong cua 5 so nguyen lien tiep chia het cho 5
Gọi 3 số nguyên liên tiếp là a, a+1, a+2, a+3, a+4 với a\(\in\)Z
Ta có a + a+1 + a+2 + a+3 + a+4 = 5a + 10
Vì 10⋮5 và 10a⋮5 nên tong cua 5 so nguyen lien tiep chia het cho 5
gọi số lẻ liên tiếp là 2x+1 và 2x+3
ta có \(2x+1+2x+3=4x+4\)
\(=4\left(x+1\right)⋮4\)
\(\Rightarrow\)tổng 2 số lẻ liên tiếp chia hết cho 4
Ta thấy: số lẻ cộng số lẻ thì ra số chẵn
Ví dụ như: 1 + 3 = 4, 3 + 5 = 8
Mỗi số đều chia hết cho 4. Suy ra: tổng của hai số lẻ liên tiếp chia hết cho 4