K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2016

p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2

+ Nếu p=3k+1 thì chia hết cho 3 => 2p+1 không phải số nguyên tố => loại

+ Vậy p có dạng 3k+2

Khi đó chia hết cho 3

Vậy 4p+1 là hợp số

tick nha

15 tháng 11 2015

Vì p là số nguyên tố lớn hơn 3 nên p có dạnh :3k+1;3k+2

+)Nếu p=3k+2=>4p+1=4(3k+2)+1=4.3k+8+1=4.3k+9 =3.(4k+3) chia hết cho 3

=>4p+1 là hợp số (trái với giả thiết,loại)

Vậy p=3k+1 =>2p+1=2(3k+1)+1=2.3k+2+1=2.3k+3=3.(2k+1) chia hết cho 3

=>2p+1 là hợp số (đpcm)

Lần này l-i-k-e cho mình tử tế nha

1 tháng 12 2017

Xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2, trong 3 số này có 1 số chia hết cho 3
Do p nguyên tố > 3 => p không chia hết cho 3 => 4p không chia hết cho 3
2p + 1 cũng là số nguyên tố > 3 => 2p + 1 không chia hết cho 3 => 2.(2p + 1) hay 4p + 2 không chia hết cho 3
=> 4p + 1 chia hết cho 3
Mà 1 < 3 < 4p + 1 => 4p + 1 là hợp số

1 tháng 12 2017

a, p là số nguyên tố lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2


xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI


xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)


vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số


do đó 4p + 1 là hợp số ( đpcm )

11 tháng 11 2015

Ta có p có dạng là 3k+1;3k+2

- Nếu p= 3k+1.Ta có:

2p+1=2(3k+1)+1

       = 6k+2+1

       = 6k+3 chia hết cho 3 ( không hợp với đề bài )

Vậy p chỉ có thể bằng 3k+2.Ta có:

4p+1=4(3k+2)+1

        = 12k+8+1

        = 12k+9 chia hết cho 3 ( là hợp số)

Vậy 4p+1 là hợp số 

11 tháng 11 2015

hợp số ko phải là hộp số đâu phan quoc à

Xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2, trong 3 số này có 1 số chia hết cho 3

Do p nguyên tố > 3 => p không chia hết cho 3 => 4p không chia hết cho 3

2p + 1 cũng là số nguyên tố > 3 => 2p + 1 không chia hết cho 3 => 2.(2p + 1) hay 4p + 2 không chia hết cho 3

=> 4p + 1 chia hết cho 3

Mà 1 < 3 < 4p + 1 => 4p + 1 là hợp số

18 tháng 8 2018

vì p là SNT lớn hơn 3 => p=3k+1 hoặc p=3k+2 (k thuộc N*)

nếu p=3k+1

thì 2p+1=2.(3k+1)+1=6k+2+1=6k+3 chia hết cho 3(KTM)

nếu p=3k+2

thì 2p+1=2.(3k+2)+1=6k+4+1=6k+5 ko chia hết cho 3(TM)

=> p=3k+2

khi đó 4p+1=4.(3k+2)+1=12k+8+1=12k+9 chia hết cho 3.vậy nếu p là SNT lớn hơn 3 thì 4p+1 lag hợp số

bài này toán nâng cao l6 nha

AH
Akai Haruma
Giáo viên
25 tháng 7 2023

Lời giải:

Vì $p$ là số nguyên tố lớn hơn $3$ nên $(p,3)=1$. Khi đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ tự nhiên.

Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=6k+3\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái với giả thiết - loại) 

Do đó $p=3k+2$.

Khi đó: $4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số (đpcm)