Bài 1: Cho tam giác ABC có ∡B < ∡C . Vẽ AH ⊥ BC( H thuộc BC) . M là điểm trên đường thẳng AH.
a, So sánh BH và HC.
b, So sánh ∡MBC và ∡MCB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có góc B<góc C
nên AB>AC
Xét ΔABC có
AB>AC
HB,HC lần lượt là hình chiếu của AB,AC trên BC
=>HB>HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
HB>HC
=>MB>MC
c: MB>MC
=>góc MCB>góc MBC
a: góc B<góc C
=>AB>AC
Xét ΔABC có AB>AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB>HC
b: Xét ΔMBC có HB>HC
mà HB,HC lần lượt là hình chiếu của MB,MC trên BC
nên MB>MC
=>góc MCB>góc MBC
a: \(\widehat{B}< \widehat{C}\)
nên AB>AC
Xét ΔABC có AB>AC
mà HB là hình chiếu của AB trên BC
và HC là hình chiếu của AC trên BC
nên HB>HC
b: Xét ΔDBC có HB>HC
mà HB là hình chiếu của DB trên BC
và HC là hình chiếu của DC trên BC
nên DB>DC
a: Ta có: ΔBEH vuông tại H
nên \(\widehat{BEH}< 90^0\)
=>\(\widehat{BEA}>90^0\)
=>BA>BE
b: Ta có: ΔEHC vuông tại H
nên \(\widehat{HEC}< 90^0\)
=>\(\widehat{AEC}>90^0\)
hay CA>CE
c: Xét ΔEBC có HB<HC
mà HB là hình chiếu của EB trên BC
và HC là hình chiếu của EC trên BC
nên EB<EC
a: góc B<góc C
=>AB>AC
=>BH>HC
b: Xét ΔMBC có
HB,HC lần lượt là hình chiếu của MB,MC trên BC
BH>HC
=>MB>MC
=>góc MBC<góc MCB