Chứng tỏ rằng đa thức sau vô nghiệm:
a) P(x) =2x^6 +7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\left|x\right|\ge0\) nên |x| + 1 > 0 với mọi x. Do đó phương trình đã cho vô nghiệm.
b) Tương tự, phân tích \(x^2+2x+3=\left(x+1\right)^2+2>0\)
4:
a: f(x)=0
=>-x-4=0
=>x=-4
b: g(x)=0
=>x^2+x+4=0
Δ=1^2-4*1*4=1-16=-15<0
=>g(x) ko có nghiệm
c: m(x)=0
=>2x-2=0
=>x=1
d: n(x)=0
=>7x+2=0
=>x=-2/7
x^4-2x^2+6
=x^4 - x^2 - x^2 +1 +5
=x^2(x^2-1)-(x^2-1) +5
=(x^2-1)(x^2-1) +5
=(x^2-1)^2 + 5\(\ge\)5 hay \(\ne\)0
Vậy x^4- 2x^2 +6 vô nghiệm
`a,`
`f(x)=x^2+4x+10`
\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)
`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)
`->` Đa thức không có nghiệm (vô nghiệm).
`c,`
`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.
Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)
\(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`b,`
`g(x)=x^2-2x+2017`
Vì \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`d,`
`g(x)=4x^2004+x^2018+1`
Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)
\(x^{2018}\ge0\text{ }\forall\text{ }x\)
`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
Ta có x\(^6\)\(\ge\)0 với mọi x
-3x\(^6\)\(\le\)0 với mọi x
nên -3x\(^6\)-2022 \(\le\)0 với mọi x
Vậy đa thức -3x\(^6\)-2022 vô nghiệm
\(A=x^2+3x+3=x^2+2\cdot\frac{3}{2}\cdot x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+3\)
=> \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{3}{2}\right)^2\ge0\) => \(A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=> Đa thức A vô nghiệm.
\(2x^2+8x+17=2.\left(x^2+2.x.2+2^2\right)+9=2.\left(x+2\right)^2+9\)
Ta có: \(2.\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x+2\right)^2+9\ge9\forall x\)
\(\Rightarrow2x^2+8x+17>0\forall x\)
\(\Rightarrow\)đa thức \(2x^2+8x+17\)vô nghiệm
đpcm
\(-x^2+4x-6=-\left(x^2+2.x.2+2^2\right)-2=-\left(x+2\right)^2-2\)
Ta có:\(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2-2\le-2\forall x\)
\(\Rightarrow-\left(x+2\right)^2-2< 0\forall x\)
\(\Rightarrow\)đa thức \(-x^2+4x-6\)vô nghiệm
đpcm
Tham khảo nhé~
a) 4x2+4x+2
=4x2+2x+2x+2
=2x.(2x+1)+2x+1+1
=2x.(2x+1)+(2x+1)+1
=(2x+1)2+1
Vì (2x+1)2 luôn lớn hơn hoặc = 0 nên (2x+1)2+1>0, vô nghiệm
b) x2+x+1
\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\), vô nghiệm
Phần c để tớ nghĩ đã
cũng đơn giản thôi
\(x^6\ge0\Leftrightarrow2x^6\ge0\Leftrightarrow P\left(x\right)=2x^6+7\ge7>0\) => đa thức P(x) vô nghiệm