so sánh 19^100+1/19^99+1 và 19^99+1/19^98+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{19}{19}\) = 1 < \(\dfrac{2005}{2004}\) vậy \(\dfrac{19}{19}\) < \(\dfrac{2005}{2004}\)
\(\dfrac{72}{73}\) = 1 - \(\dfrac{1}{73}\)
\(\dfrac{98}{99}\) = 1 - \(\dfrac{1}{99}\)
Vì \(\dfrac{1}{73}\) > \(\dfrac{1}{99}\) nên \(\dfrac{72}{73}\) < \(\dfrac{98}{99}\)
a,19/7=5/7 +2
2>7/9 => 19/7>7/9
b, 72/73=1- 1/73
98/99=1- 1/99
1/73>1/99
c,19/18=1+ 1/18
2005/2004=1+ 1/2004
1/18>1/2004
d, 72/73=(58+14)/73=58/73 + 14/73
58/73>58/99
=> 72/73>58/99
Gợi ý :
a ) Tách số 19 ra 19 số 1
Nhóm ở trên tử , mỗi số hạng cộng với 1
=> ...
b ) Tách số 99 ở mẫu thành 99 số 1
Nhóm ở dưới mẫu , mỗi số hạng cộng với 1
=> ...
Chúc học tốt !!!
Bài 1:
1: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà \(17^{19}+1>17^{18}+1\)
nên 17A>17B
hay A>B
2: \(C=\dfrac{98^{99}+98^{10}+1-98^{10}}{98^{89}+1}=98^{10}+\dfrac{1-98^{10}}{98^{89}+1}\)
\(D=\dfrac{98^{98}+98^{10}+1-98^{10}}{98^{88}+1}=98^{10}+\dfrac{1-98^{10}}{98^{88}+1}\)
mà \(98^{89}+1>98^{88}+1\)
nên C>D
1) Phân tích A ra :
A= 1717.17+\(\frac{1}{17^{18}.17}\)+1 So sánh với B ta có: A có 1718>1717 của B nhưng B lại có 1/1718>1/1719.
Mà 1718>1/1718 nên suy ra A>B
2) Bài nay tương tự bài trên.
2/(2012+2013) < 2/(2012 + 2012) = 2/ (2.2012) = 1/2012
2009/(2012+2013) < 2009/2012
=> 2011/(2012+2013) = 2/(2012+2013) + 2009/(2012+2013) < 1/2012 + 2009/2012
=> 2011/(2012+2013) < 2010/2012 (a)
2012/(2012+2013) < 2012/2013 (b)
lấy (a) + (b) => (2011+2012)/(2012+2013) < 2010/2012 + 2012/2013
vậy B < A
đởn giản chúng đều= nhau
\(\frac{19^{100}+1}{19^{99}+1}< \frac{19^{100}+1+18}{19^{99}+1+18}=\frac{19.\left(19^{99}+1\right)}{19.\left(19^{98}+1\right)}=\frac{19^{99}+1}{19^{98}+1}\)
\(\Rightarrow A< B\)
Vậy A<B
k minh nha