K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=-1++(-1)+..+-(1) có 50 số -1

=>A=-1x50=-50

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+0+..+0

B=0

C=2^100-(2^99+2^98+...+1)

C=2^100-(2^100-1)

C=1

31 tháng 10 2017

\(99^{100}:11=99.99^{99}:11=9^{99}.\left(99:11\right)=9.9^{99}\).
Vì vậy:
 \(99^{100}:11=9.99^{99}=99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}+99^{99}\)\(>98^{99}+97^{99}+96^{99}+95^{99}+94^{99}+93^{99}+92^{99}+91^{11}\).
 

31 tháng 10 2017

thank you

B=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)

B=0+0+..+0

B=0

C=2^100-(2^99+2^98+2^97+...+1)

đặt D=2^99+2^98+2^97+...+1

=>D=2^100-1

=>C=2^100-(2^100-1)=1

2 tháng 8 2017

a, \(A=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)

\(\Rightarrow3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

\(\Rightarrow4A=3^{101}+1\)

\(\Rightarrow A=\dfrac{3^{101}+1}{4}\)

Vậy...

b, tương tự

27 tháng 9 2020

A = 2100- 299 + 298 - 297 + ... + 22 - 2

=> 2A =  2101 - 2100 + 299 - 298 + ... + 23 - 22 

Khi đó 2A  + A = (2101 - 2100 + 299 - 298 + ... + 23 - 22) + (2100- 299 + 298 - 297 + ... + 22 - 2)

=> 3A = 2101 - 2

=> \(A=\frac{2^{201}-2}{3}\)

b) Ta có B = 3100- 399 + 398 - 397 + ... + 32 - 3 + 1

=> 3B = 3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3

Khi đó 3B + B = (3101 - 3100 + 399 - 398  + ... + 33 - 32 + 3) + (3100- 399 + 398 - 397 + ... + 32 - 3 + 1)

=> 4B = 3101 + 1

=> B = \(\frac{3^{101}+1}{4}\)

27 tháng 9 2020

a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

=> \(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

=> \(2A+A=\left(2^{101}-2^{100}+...-2^2\right)+\left(2^{100}-2^{99}+...-2\right)\)

<=> \(3A=2^{101}-2\)

=> \(A=\frac{2^{101}-2}{3}\)

b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)

=> \(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

=> \(3A+A=\left(3^{101}-3^{100}+...+3\right)+\left(3^{100}-3^{99}+...+1\right)\)

<=> \(4A=3^{101}+1\)

=> \(A=\frac{3^{101}+1}{4}\)