K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2017

Ta có:\(\frac{1}{2x}+\frac{2}{3\left(x-1\right)}=\frac{1}{3}\)

          \(\frac{3\left(x-1\right)}{6x\left(x-1\right)}+\frac{4x}{6x\left(x-1\right)}=\frac{1}{3}\)

            \(\frac{3x-3+4x}{6x\left(x-1\right)}=\frac{1}{3}\)

             \(\frac{7x-3}{6x\left(x-1\right)}=\frac{1}{3}\)

             \(\Rightarrow21x-9=6x^2-6x\)

              \(\Rightarrow21x-9-6x^2+6x=0\)

               \(\Rightarrow-6x^2+27x-9=0\)

           Đến đây mk gợi ý thôi nha

7 tháng 3 2017

ko hieu sao cau tinh ta nhu vay

1 tháng 10 2017

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)

13 tháng 12 2018

\(A=x\left(x+4\right)-6\left(x-1\right)\left(x+1\right)+\left(2x-1\right)^2\)

\(A=x^2+4x-6\left(x^2-1\right)+\left(4x^2-4x+1\right)\)

\(A=x^2+4x-6x^2+6+4x^2-4x+1\)

\(A=-x^2+7\)

Để A có giá trị bằng 3 thì :

\(-x^2+7=3\)

\(-x^2=-4\)

\(x^2=4\)

\(x\in\left\{\pm2\right\}\)

Vậy..........

22 tháng 11 2017

giup minh voi cac ban

14 tháng 4 2017

Thay \(x=1;y=-1;z=3\) vào biểu thức ta có

\(1\cdot\left(-1\right)\cdot3+\dfrac{2\cdot1^2\cdot\left(-1\right)}{\left(-1\right)^2+1}\)

\(=-3+\dfrac{-2}{2}\\ =-3-1\\ =-4\)

14 tháng 4 2017

Thay x=1; y=-1; z=3 vào biểu thức ta có:

\(1.\left(-1\right).3+\dfrac{2.1^2}{\left(-1\right)^2}+1\)

\(=-3+\dfrac{2}{1}+1\)

\(=-3+2+1\)

\(=\left(-1\right)+1\)

\(=0\)

Tích mình nha!!!hahahahahaha

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

a. Tại x=\(\frac{-1}{2}\), ta có:

 \(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)

b. Ta có:

 \(x^2+4x+3=0\)

\(\Rightarrow x^2+x+3x+3=0\)

\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)

\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)

Vậy \(x=-1;x=-3\)

6 tháng 8 2017

1=13500

2=103500