So sánh
A=1.1!+2.2!+3.3!+...+100.100!/1.199+2.197+3.195+...+100.1
B=99!/3
(! là giai thừa nhé.vd:2=1×2,3=1×2×3,4=1×2×3×4...)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.1!+2.2!+3.3!+4.4!+5.5!+2.1.2+3.1.2.3+4.1.2.3.4+5.1.2.3.4.5
=1+4+18+96+600=600+96+4+18+1=600+100+19+=719
a,\(D=10+100+......+1000...000-1-1-.....-1\) có 50 chữ số 0 và 50 số 1
\(=111.....111-50\) có 51 chữ số 1 \(=111.....1061\) có 48 chữ số 1
b,tương tự a
c,\(1-2^2+3^2-4^2+.......+99^2-100^2\)
\(=\left(1-2\right).\left(1+2\right)+\left(3-4\right)\left(3+4\right)+......+\left(99-100\right)\left(99+100\right)\)
\(=-\left(3+7+.....+199\right)\)\(=-\frac{\left(199+3\right).50}{2}=-5050\)
d,\(G=1.1!+2.2!+.......+100.100!\)
\(=\left(2-1\right).1!+\left(3-1\right).2!+.....+\left(101-1\right).100!\)
\(=2!-1!+3!-2!+.......+101!-100!\)
\(=101!-1!\)
Tinh tonga) D= 9+99+999+9999+...+999....9 (50 chu so 9)b) E= 9+99+999+...+999...9 (200 chu so 9)c)C=1−22+32−42+...+992−1002d) G= 1.1!+ 2. 2!+3.3!+ ... +100.100!
\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{99}{100}\cdot\frac{100}{101}\)
\(=\frac{1}{101}\)
#
\(\frac{1}{2}\). \(\frac{2}{3}\). \(\frac{3}{4}\). ....... . \(\frac{99}{100}\). \(\frac{100}{101}\)
= \(\frac{1.2.3........99.100}{2.3.4.......100.101}\)
= 1
Giai:1!=1 nên 1+1.1!=2=1.2=2!
2!+2.2!=2!.(1+2)=2!.3=3!
.........
tiếp tục ta có
100!+100.100!=101!