Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chung to :C = \(\frac{1}{1.1!}+\frac{1}{2.2!}+\frac{1}{3.3!}+...+\frac{1}{2019.2019!}< \frac{3}{2}\)
Thấy : \(\frac{1}{1.1!}=\frac{1}{1}\)
\(\frac{1}{2.2!}=\frac{1}{4}\)
\(\frac{1}{3.3!}< \frac{1}{1.2.3}\)( Vì 3.3! > 1.2.3 )
...
\(\frac{1}{2019.2019!}< \frac{1}{2017.2018.2019}\)( vì 2019.2019! < 2017.2018.2019)
Cộng từng vế có :
\(\frac{1}{3.3!}+\frac{1}{4.4!}+...+\frac{1}{2019.2019!}< \frac{1}{1.2.3}+...+\frac{1}{2017.2018.2019}\)
\(\Rightarrow\frac{1}{1.1!}+\frac{1}{2.2!}+...+\frac{1}{2019.2019!}< \frac{1}{1}+\frac{1}{4}+\frac{1}{1.2.3}+...+\frac{1}{2017.2018.2019}\)
\(\Rightarrow C< \frac{1}{1}+\frac{1}{4}+\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right):2\)
\(\Rightarrow C< \frac{1}{1}+\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{2018.2019}\right):2\)
\(\Rightarrow C< \frac{3}{2}-\frac{1}{2.2018.2019}\)
Vì \(\frac{1}{2.2018.2019}>0\Rightarrow C< \frac{3}{2}\)
đề câu số 5 là chia hết cho \(5^n\)chứ ko phải là 5 đâu bạn
Ta có : \(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4.4}< \frac{1}{3.4}\)
...................
\(\frac{1}{100.100}< \frac{1}{99.100}\)
Suy Ra : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+......+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Ta có : \(\frac{1}{2.2}\)\(< \frac{1}{1.2}\)
\(\frac{1}{3.3}\)\(< \frac{1}{2.3}\)
\(\frac{1}{4.4}\)\(< \frac{1}{3.4}\)
...... .... ......
\(\frac{1}{100.100}\)\(< \frac{1}{99.100}\)
\(\Rightarrow\)\(\frac{1}{2.2}\)+ \(\frac{1}{3.3}\)+ \(\frac{1}{4.4}\)+ ..... + \(\frac{1}{100.100}\)< \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+ ..... + \(\frac{1}{99.100}\)
\(\frac{1}{2.2}\)+ \(\frac{1}{3.3}\)+ .... + \(\frac{1}{100.100}\)< \(1-\frac{1}{100}=\frac{99}{100}< 1\)
Đặt \(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}\)
\(\Rightarrow A< \frac{99}{100}\)
Mà \(\frac{99}{100}< 1\Rightarrow A< \frac{99}{100}< 1\)
\(\Rightarrow A< 1\)
S1 = 3 + 7 + 11 + .... + 2015
SSH : ( 2015 - 3 ) : 4 + 1 = 504
Tổng : ( 2015 + 3 ) . 504 : 2 = 508536
\(B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+....+100\left(101-1\right)\)
\(=1.2+2.3+3.4+...+100.101-\left(1+2+3+...+100\right)\)
Ta có: \(M=1.2+2.3+...+100.101\)
\(3M=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+100.101\left(102-99\right)\)
\(=-0.1.2+1.2.3-1.2.3+2.3.4-...-99.100.101+100.101.102\)
\(=100.101.102\)
\(\Rightarrow M=\frac{100.101.102}{3}=343400\)
\(N=1+2+...+100=\frac{\left(100+1\right).100}{2}=5050\)
\(B=M-N=338350\)
Xàm hả!!!!!!!!!
toán j lạ vậy
toán đúng rồi đó ban, nhưng mình làm rồi