K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

Xàm hả!!!!!!!!!

toán j lạ vậy

11 tháng 8 2018

toán đúng rồi đó ban, nhưng mình làm rồi

3 tháng 6 2019

Thấy :            \(\frac{1}{1.1!}=\frac{1}{1}\)

                       \(\frac{1}{2.2!}=\frac{1}{4}\)

                       \(\frac{1}{3.3!}< \frac{1}{1.2.3}\)( Vì 3.3! > 1.2.3 )

                         ...

                       \(\frac{1}{2019.2019!}< \frac{1}{2017.2018.2019}\)( vì 2019.2019! < 2017.2018.2019)

Cộng từng vế có :

  \(\frac{1}{3.3!}+\frac{1}{4.4!}+...+\frac{1}{2019.2019!}< \frac{1}{1.2.3}+...+\frac{1}{2017.2018.2019}\)

\(\Rightarrow\frac{1}{1.1!}+\frac{1}{2.2!}+...+\frac{1}{2019.2019!}< \frac{1}{1}+\frac{1}{4}+\frac{1}{1.2.3}+...+\frac{1}{2017.2018.2019}\)

\(\Rightarrow C< \frac{1}{1}+\frac{1}{4}+\left(\frac{1}{1.2}-\frac{1}{2.3}+...+\frac{1}{2017.2018}-\frac{1}{2018.2019}\right):2\)

\(\Rightarrow C< \frac{1}{1}+\frac{1}{4}+\left(\frac{1}{2}-\frac{1}{2018.2019}\right):2\)

\(\Rightarrow C< \frac{3}{2}-\frac{1}{2.2018.2019}\)

Vì \(\frac{1}{2.2018.2019}>0\Rightarrow C< \frac{3}{2}\)

5 tháng 8 2018

đề câu số 5 là chia hết cho \(5^n\)chứ ko phải là 5 đâu bạn

4 tháng 3 2017

Ta có : \(\frac{1}{2.2}< \frac{1}{1.2}\)

            \(\frac{1}{3.3}< \frac{1}{2.3}\)

            \(\frac{1}{4.4}< \frac{1}{3.4}\)

              ...................

        \(\frac{1}{100.100}< \frac{1}{99.100}\)

Suy Ra : \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+......+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)

\(\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}< 1-\frac{1}{100}=\frac{99}{100}< 1\)

4 tháng 3 2017

Ta có : \(\frac{1}{2.2}\)\(< \frac{1}{1.2}\)

                \(\frac{1}{3.3}\)\(< \frac{1}{2.3}\)

                 \(\frac{1}{4.4}\)\(< \frac{1}{3.4}\)

                   ......        ....   ......

              \(\frac{1}{100.100}\)\(< \frac{1}{99.100}\)

\(\Rightarrow\)\(\frac{1}{2.2}\)\(\frac{1}{3.3}\)\(\frac{1}{4.4}\)+ ..... + \(\frac{1}{100.100}\)\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ ..... + \(\frac{1}{99.100}\)

\(\frac{1}{2.2}\)\(\frac{1}{3.3}\)+ .... + \(\frac{1}{100.100}\)\(1-\frac{1}{100}=\frac{99}{100}< 1\)

14 tháng 7 2016

Đặt \(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{100.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}\)

\(\Rightarrow A< \frac{99}{100}\)

Mà \(\frac{99}{100}< 1\Rightarrow A< \frac{99}{100}< 1\)

\(\Rightarrow A< 1\)

10 tháng 10 2021

Số đó là 338350

24 tháng 1 2016

S1 = 3 + 7 + 11 + .... + 2015

SSH : ( 2015 - 3 ) : 4 + 1 = 504

Tổng : ( 2015 + 3 ) . 504 : 2 = 508536

24 tháng 1 2016

S1 =1017072

S2=5151

S3(VIẾT SAI ĐẦU BÀI)

9 tháng 8 2015

\(B=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+....+100\left(101-1\right)\)

\(=1.2+2.3+3.4+...+100.101-\left(1+2+3+...+100\right)\)

Ta có: \(M=1.2+2.3+...+100.101\)

\(3M=1.2.\left(3-0\right)+2.3.\left(4-1\right)+...+100.101\left(102-99\right)\)

\(=-0.1.2+1.2.3-1.2.3+2.3.4-...-99.100.101+100.101.102\)

\(=100.101.102\)

\(\Rightarrow M=\frac{100.101.102}{3}=343400\)

\(N=1+2+...+100=\frac{\left(100+1\right).100}{2}=5050\)

\(B=M-N=338350\)