cho tam giác MPQ nhọn có MP>MQ gọi I là trung điểm của PQ trên tia đối của tia IM lấy điểm N sao cho IM=IN a) chứng minh tứ gicas MPNQ là hình bình hành b) gọi K là điểm đối của M qua đường thẳng PQ H là giao điểm của PQ và MK chứng minh MK vuông góc với KN c) tứ giác PQKN là hình gì vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNI và ΔMPI có
MN=MP
NI=PI
MI chung
Do đó: ΔMNI=ΔMPI
Ta có: ΔMNP cân tại M
mà MI là đường trung tuyến
nên MI là đường cao
b: Xét tứ giác MNQP có
I là trung điểm của MQ
I là trung điểm của NP
Do đó: MNQP là hình bình hành
Suy ra: MN//PQ
c: Xét tứ giác MEQF có
ME//QF
ME=QF
Do đó: MEQF là hình bình hành
Suy ra: MQ và EF cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của MQ
nên I là trung điểm của FE
hay E,I,F thẳng hàng
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MC=MB=\dfrac{BC}{2}\)
Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Hình bình hành AMCK có MA=MC
nên AMCK là hình thoi
b: AMCK là hình thoi
=>AK//MC và AK=MC
AK=MC
MB=MC
Do đó: AK=MB
AK//MC
M\(\in\)BC
Do đó: AK//MB
Xét tứ giác ABMK có
AK//BM
AK=BM
Do đó: ABMK là hình bình hành
=>AM cắt BK tại trung điểm của mỗi đường
mà O là trung điểm của AM
nên O là trung điểm của BK
=>B,O,K thẳng hàng
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
Xét \(\Delta MIN\)và \(\Delta QIP\)có:
IM = IQ (gt)
\(\widehat{MIN}=\widehat{QIP}\left(gt\right)\)
NI = PI (gt)
\(\Rightarrow\Delta MIN=\Delta QIP\left(c.g.c\right)\)
Bạn có thể vẽ hình câu b mình xem được không?
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=MB=MC=\dfrac{BC}{2}\)
Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
nên AMCK là hình bình hành
Hình bình hành AMCK có MA=MC
nên AMCK là hình thoi
b: AMCK là hình thoi
=>AK//MC và AK=MC
AK//MC
M\(\in\)BC
Do đó: AK//MB
AK=MC
MC=MB
Do đó: AK=MB
Xét tứ giác AKMB có
AK//MB
AK=MB
Do đó: AKMB là hình bình hành
c; Để hình thoi AMCK trở thành hình vuông thì \(\widehat{KCM}=90^0\)
AMCK là hình thoi
=>CA là phân giác của \(\widehat{KCM}\)
=>\(\widehat{ACM}=\dfrac{1}{2}\cdot\widehat{KCM}=45^0\)
=>\(\widehat{ACB}=45^0\)
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
MI=NI(gt)
Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)
b) Ta có: ΔIMC=ΔINC(cmt)
nên (hai góc tương ứng)
hay
Xét ΔBAC vuông tại A và ΔKAC vuông tại A có
AC chung
(cmt)
Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)
⇒CB=CK(hai cạnh tương ứng)
Ta có: MI⊥AC(gt)
AB⊥AC(ΔABC vuông tại A)
Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)
hay MN//KB
Xét ΔCKB có
M là trung điểm của CB(gt)
MN//KB(cmt)
Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)
c) Ta có: MA=ME(gt)
mà A,M,E thẳng hàng
nên M là trung điểm của AE
Xét tứ giác ABEC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AE(cmt)
Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)
d) Ta có: ABEC là hình bình hành(cmt)
nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)
mà AB=AK(ΔCBA=ΔCKA)
nên EC=AK
Ta có: AB//EC(Cmt)
nên CE//KA
Xét tứ giác AECK có
CE//AK(cmt)
CE=AK(cmt)
Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Xét ΔCAB có
M là trung điểm của BC(gt)
MI//AB(cmt)
Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)
Ta có: AECK là hình bình hành(cmt)
nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà I là trung điểm của AC(cmt)
nên I là trung điểm của EK
hay E,I,K thẳng hàng(đpcm)
chúc bạn học tốt nha cái này mình cũng không chắc là đúng đó bạn :)
a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
MI=NI(gt)
Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)
b) Ta có: ΔIMC=ΔINC(cmt)
nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)
hay \(\widehat{BCA}=\widehat{KCA}\)
Xét ΔCAB vuông tại A và ΔCAK vuông tại A có
CA chung
\(\widehat{BCA}=\widehat{KCA}\)(cmt)
Do đó: ΔCAB=ΔCAK(Cạnh góc vuông-góc nhọn kề)
Suy ra: CA=CK(hai cạnh tương ứng)
Ta có: CN+NK=CK(N nằm giữa C và K)
CM+MB=CB(M nằm giữa C và B)
mà CK=CB(cmt)
và CN=CM(ΔCNI=ΔCMI)
nên NK=MB
mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên \(NK=\dfrac{BC}{2}\)
mà BC=KC(cmt)
nên \(NK=\dfrac{CK}{2}\)
mà điểm N nằm giữa hai điểm C và K
nên N là trung điểm của CK(đpcm)
c) Xét ΔAMB và ΔEMC có
MA=ME(gt)
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔEMC(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MEC}\)(hai góc tương ứng)
mà \(\widehat{MAB}\) và \(\widehat{MEC}\) là hai góc ở vị trí so le trong
nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)
a: Xét ΔABC có
M,I lần lượt là trung điểm của CB,CA
=>MI là đường trung bình
=>MI//AB và MI=AB/2
mà MI=MK/2
nên MK=AB
MI//AB
AB vuông góc AC
=>MI vuông góc AC
Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
=>AMCK là hình bình hành
mà AC vuông góc MK
nên AMCK là hình thoi
b: Xét tứ giác AKMB có
MK//AB
MK=AB
=>AKMB là hình bình hành
a: Xet tứ giác MPNQ có
I là trung điểm chung của MN và PQ
nên MPNQ là hình bình hành
b:M đối xứng K qua PQ
nên MK vuông góc với PQ tại trung điểm của MK
=>H là trung điểm của MK
Xét ΔMKN có MH/MK=MI/MN
nên HI//KN
=>KN vuông góc với KM
c: M đối xứng K qua PQ
nên QM=QK
=>QK=PN
Xét tứ giác PQNK có
PQ//NK
PN=QK
Do đó: PQNK là hình thang cân