K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 12 2022

a.

Do N là trọng tâm tam giác ABC \(\Rightarrow\) N là giao điểm AK và BO

Hay A,N,K,F thẳng hàng

\(\Rightarrow\left(AMN\right)\cap\left(SCD\right)=MF\)

b.

Trong mp (SCD) nối FM kéo dài cắt SD tại I

Dễ dàng nhận thấy \(SO=\left(SAC\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}M\in SC\in\left(SAC\right)\\M\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow AM=\left(SAC\right)\cap\left(AMN\right)\)

\(N\in BD\in\left(SBD\right)\Rightarrow N\in\left(AMN\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}I\in SD\in\left(SBD\right)\\I\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow IN=\left(SBD\right)\cap\left(AMN\right)\)

\(\Rightarrow\) 3 mặt phẳng (AMN), (SAC), (SBD) cắt nhau theo 3 giao tuyến phân biệt SO, AM, IN nên 3 đường thẳng này song song hoặc đồng quy

Mà SO cắt AM tại E \(\Rightarrow SO;AM;NI\) đồng quy tại E

Hay N;E;I thẳng hàng

M là trung điểm SC, O là trung điểm AC \(\Rightarrow\) E là trọng tâm tam giác SAC

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{1}{3}\)

Theo giả thiết N là trọng tâm ABC \(\Rightarrow\dfrac{ON}{OB}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{ON}{OB}\Rightarrow EN||SB\Rightarrow NI||SB\Rightarrow NI||\left(SBC\right)\)

NV
23 tháng 12 2022

c.

Do \(CF||AB\), áp dụng định lý Talet:

\(\dfrac{KF}{AK}=\dfrac{KC}{KB}=1\Rightarrow KF=AK\)

Do \(AD||BK\) \(\Rightarrow\dfrac{KN}{AN}=\dfrac{BK}{AD}=\dfrac{1}{2}\Rightarrow KN=\dfrac{1}{2}AN\)

\(\Rightarrow KN=\dfrac{1}{2}\left(AK-KN\right)\Rightarrow KN=\dfrac{1}{3}AK=\dfrac{1}{3}KF\)

\(\Rightarrow KF=3KN=3\left(NF-KF\right)\)

\(\Rightarrow KF=\dfrac{3}{4}NF\)

Theo giả thiết M, K lần lượt là trung điểm SC, BC \(\Rightarrow MK\) là đường trung bình tam giác SBC

\(\Rightarrow MK||SB\Rightarrow MK||IN\) (theo c/m câu b)

Áp dụng định lý Talet:

\(\dfrac{KM}{IN}=\dfrac{KF}{NF}=\dfrac{3}{4}\Rightarrow KM=\dfrac{3}{4}IN\)

\(\Rightarrow d\left(M;AF\right)=\dfrac{3}{4}d\left(I;AF\right)\)

\(\Rightarrow\dfrac{S_{\Delta FKM}}{S_{\Delta KAI}}=\dfrac{\dfrac{1}{2}.d\left(M;KF\right).KF}{\dfrac{1}{2}d\left(I;AK\right).AK}=\dfrac{3}{4}.1=\dfrac{3}{4}\)

NV
27 tháng 12 2022

IJ là đường trung bình của hình thang \(\Rightarrow\left\{{}\begin{matrix}IJ||AB\\IJ=\dfrac{AB+CD}{2}\end{matrix}\right.\)

Qua G kẻ đường thẳng song song AB lần lượt cắt SB, SA tại E và F

\(\Rightarrow\) Tứ giác IJEF là thiết diện của (GIJ) và chóp

\(EF||AB||IJ\Rightarrow IJEF\) là hình thang

Gọi M là trung điểm AB

Theo tính chất trọng tâm và định lý Talet:

\(\dfrac{EF}{AB}=\dfrac{SG}{SM}=\dfrac{2}{3}\)

Để IJEF là hình bình hành \(\Leftrightarrow IJ=EF\)

\(\Leftrightarrow\dfrac{2}{3}AB=\dfrac{AB+CD}{2}\Leftrightarrow\dfrac{1}{3}AB=CD\)

\(\Rightarrow AB=3CD\)

25 tháng 6 2023

Tự vẽ hình nhé!

Ta có:

\(V_{OBCNM}=\dfrac{1}{3}d\left(O;\left(BCNM\right)\right).S_{BCNM}=\dfrac{1}{3}.\dfrac{1}{2}d\left(A;\left(SBC\right)\right).\dfrac{3}{4}S_{SBC}=\dfrac{1}{8}V_{SABC}=\dfrac{1}{16}V_{SABCD}\)

\(\Rightarrow\dfrac{V_{OBCNM}}{V_{SABCD}}=\dfrac{1}{16}\)

NV
3 tháng 1

\(SM=MA=SA-SM\Rightarrow SM=\dfrac{1}{2}SA\)

Do IM song song SO, áp dụng định lý Talet trong tam giác SAO:

\(\dfrac{IO}{OA}=\dfrac{SM}{SA}=\dfrac{1}{2}\)

Do NK song song SO, áp dụng định lý Talet cho tam giác SCO:

\(\dfrac{OK}{OC}=\dfrac{SN}{SC}=\dfrac{1}{3}\)

Mà ABCD là hình bình hành nên \(OA=OC\)

\(\Rightarrow\dfrac{OI}{OK}=\dfrac{3}{2}\)

22 tháng 10 2023

Để chứng minh a. ON//(SAB) và b. (OMN)//(SCD), chúng ta có thể sử dụng các định lý và quy tắc trong hình học không gian.

a. Để chứng minh ON//(SAB), ta có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Theo định lý này, nếu có hai đường thẳng cắt một mặt phẳng và các đường thẳng này đều song song với một đường thẳng thứ ba trong mặt phẳng đó, thì hai đường thẳng đó cũng song song với nhau. Áp dụng định lý này, ta có thể chứng minh ON//(SAB) bằng cách chứng minh rằng ON và AB đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.

b. Để chứng minh (OMN)//(SCD), ta cũng có thể sử dụng định lý về đường thẳng song song trong hình học không gian. Tương tự như trường hợp trước, ta cần chứng minh rằng OM và CD đều song song với một đường thẳng thứ ba trong mặt phẳng chứa chóp S.ABCD.

Tuy nhiên, để chứng minh chính xác các phần a và b, cần có thêm thông tin về các góc và độ dài trong hình chóp S.ABCD.

Chọn B