K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

\(\frac{n+1}{n-3}=4+\frac{n+4}{n-3}=>để\frac{n+1}{n-3}\)tối giản thì n-3 thuộc Ư(4) => Ư(4) = -4;-2;-1;1;2;4

n-3 = -4 => n = -1

n-3 = -2 => n = 1

n-3 = -1 => n =2

n-3 = 1 => n = 4

n-3 = 2 => n= 5

n-3 = 4 => n = 7 

3 tháng 2 2016

mik nghĩ n=0

27 tháng 2 2017

\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}\)

Vì \(n-3⋮n-3\) . Để \(\frac{\left(n-3\right)+4}{n-3}\) là phân số tối giản <=> 4 không chia hết cho n - 3

\(\Rightarrow n-3\ne4k\) ( k thuộc N) \(\Rightarrow n\ne4k+3\)

Vậy với \(n\ne4k+3\) ( k thuộc N) thì \(A=\frac{n+1}{n-3}\) là phân số tối giản 

15 tháng 4 2017

\(A=\frac{n+1}{n-3}=\frac{\left(n-3\right)+4}{n-3}\)

Vì n - 3 \(⋮\)n - 3 nên \(\frac{\left(n-3\right)+4}{n-3}\)là phân số tối giản. Suy ra 4 không chia hết cho n -3

\(=>n-3\ne4k\left(k\in N\right)=>4k+3\)

Vậy \(n\ne4k+3\left(k\in N\right)=>A=\frac{n+1}{n-3}\)là phân số tối giản

Ủng hộ ! 

31 tháng 1 2016

1,Gọi UCLN(n+1,n+2)=d

Ta có:n+1 chia hết cho d

         n+2 chia hết cho d

=>(n+2)-(n+1) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy \(\frac{n+1}{n+2}\)tối giản

5 tháng 2 2016

{-1;2;4;7} , ủng hộ mk nha

5 tháng 2 2016

van anh ta trình bày ra bn ơi

10 tháng 8 2016

a) gọi D là UCLN(3n-2;4n-3)

\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho  D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D

\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D

\(\Rightarrow\)(12n-9-12n+8) chia hết cho D

\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}

hay UCLN(3n-2;4n-3) \(\in\){1;-1}

chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản

b) +) để A là phân số thì n-3\(\ne\)0

                             =>n\(\ne\)3

+) ta có  \(\frac{n+1}{n-3}\)\(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)

để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên 

=> 4 chia hết n-3

=> n-3 \(\in\)U(4)

mà U(4) = {-1;-2;-4;1;2;4}                             

ta có bảng

n-3-1-2-4124
n21-1457

vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên
 

22 tháng 4 2016

bạn ơi

a) Để A=\(\frac{n-5}{n+1}\)có giá trị nguyên thì n-5 chia hết cho n+1

=>n+1-6 chia hết cho n+1

=>6 chia hết cho n+1

=>n+1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}

=>n thuộc {0;1;2;5;-2;-3;-4;-7}

Vậy.....

23 tháng 2 2016

\(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)

Để A là phân số tối giản <=> \(\frac{4}{n-3}\) là phân số tối giản 

23 tháng 2 2016

Để A là phân số tối giản thì: n + 1 chia hết cho n - 3

                                      =>   n -3 + 4 chia hết cho n  - 3

                                          mà n - 3 chia hết cho n - 3

                                        => 4 chia hết cho n - 3 hay n - 3 thuộc Ư(4)

                                       => n - 3 thuộc { -1 ; 1 ; 2 ; -2 ; 4 ; - 4 }

                                      => n thuộc { 2 ; 4 ; 5 ; 1 ; 7 ; - 1 }