Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi d= ƯCLN(2n +1; 3n+2)
=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d
3n+2 chia hết cho d => 2.(3n+2) chia hết cho d
=> 2.(3n+2) - 3.(2n+1) chia hết cho d
=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản
2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5
=> (n+ 2) - (n-5) chia hết cho n - 5
=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}
n-5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n \(\in\) {-2;4;6;12}
1) Gọi d= ƯCLN(2n +1; 3n+2)
=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d
3n+2 chia hết cho d => 2.(3n+2) chia hết cho d
=> 2.(3n+2) - 3.(2n+1) chia hết cho d
=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản
2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5
=> (n+ 2) - (n-5) chia hết cho n - 5
=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}
n-5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n $\in$∈ {-2;4;6;12}
a, Để A là phân số thì ta có điều kiện : \(n-1\ne0\) => \(n\ne1\)
Vậy điều kiện của n để A là phân số là \(n\ne1\)
Ta có : \(\frac{5}{n-1}\Rightarrow n-1\inƯ(5)\)
=> A là số nguyên <=> \(n-1\in\left\{\pm1;\pm5\right\}\)
Lập bảng :
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
b, Gọi d là ƯCLN\((n,n+1)\) \((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
\(\Rightarrow(n+1)-n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy : .....
Điều kiện của n để A là phân số là n khác 1 và n thuộc z( mk ko chắc chắn lắm)
để A là số nguyên thì n-1 chia hết cho 5
suy ra n-1 thuộc ước của 5 ={ 1;-1;5;-5}
* Xét trường hợp:
TH1 n-1=1 suy ra n=2(TM)
TH2 n-1=-1 suy ra n=0 (TM)
TH3 n-1=5 suy ra n=6(TM)
TH4n-1=-5 suy ra n=-4(TM) ( MK NGHĨ BN NÊN LẬP BẢNG VÀ DÙNG KÍ HIỆU NHÉ!)
vậy n thuộc { -4;0;2;6}
# HỌC TỐT #
1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)và\(3n+2\)là nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)
câu 1 :
gọi d = ƯCLN ( 2n + 1; 3n +2 )
=> 2n + 1 chia hết cho d => 3 ( 2n +1 ) chia hết cho d
3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d
ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4 - [ 6n + 3 ] chia hết cho d
=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản
\(\frac{n+1}{n-3}=4+\frac{n+4}{n-3}=>để\frac{n+1}{n-3}\)tối giản thì n-3 thuộc Ư(4) => Ư(4) = -4;-2;-1;1;2;4
n-3 = -4 => n = -1
n-3 = -2 => n = 1
n-3 = -1 => n =2
n-3 = 1 => n = 4
n-3 = 2 => n= 5
n-3 = 4 => n = 7
1,Gọi UCLN(n+1,n+2)=d
Ta có:n+1 chia hết cho d
n+2 chia hết cho d
=>(n+2)-(n+1) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy \(\frac{n+1}{n+2}\)tối giản