K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

Để E có giá trị nguyên thì :5 - x chai hết cho x - 2

<=> 5 - x - 2 chai hết cho x - 2

=> 5 chia hết cho x - 2

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

=> x = {-3;1;3;7}

28 tháng 2 2017

Cảm ơn bạn nha :D

28 tháng 2 2017

Ta có: E= 5-x/x-2=2-x+3/x-2=2-x/x-2 + 3/x-2=-1+3/x-2

a) Để E có giá trị nguyên thì 3/x-2 cũng là số nguyên =) 3 chia hết cho x-2

=) x-2 thuộc tập hợp -3;-1;1;3

=) x thuộc tập hợp -1;1;3;5

28 tháng 2 2017

Để E có giá trị nguyên thì :5 - x chai hết cho x - 2

<=> 5 - x - 2 chai hết cho x - 2

=> 5 chia hết cho x - 2

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

=> x = {-3;1;3;7}

30 tháng 1 2016

x=-3

y=-5

z=-1

7 tháng 8 2017

\(A=\frac{4+x}{x+3}=\frac{x+3+1}{x+3}=1+\frac{1}{x+3}\)(x\(\ne\)-3)

de A thuoc Z ma x thuoc Z \(\Leftrightarrow x+3\in\)Ư(3)={1;-1;3;-3}

ta co bang

x+31-13-3
x-2(tm)-4(tm)0(tm)-6(tm)

vay de A thuoc Z khi x \(\in\){-2;-4;0;-6}

co \(|^{ }_{ }x+1|^{ }_{ }\ge0\)voi moi x

\(\Rightarrow|^{ }_{ }x+1|^{ }_{ }-2\ge-2\)hay B \(\ge\)-2

dau "=" xay ra khi x+1=0\(\Leftrightarrow\)x=-1

vay voi x=-1 thi B dat gia tri nho nhat la -2

7 tháng 1 2020

a) Vì \(\left|x-5\right|\ge0\)nên \(100-\left|x-5\right|\le100\)

Để A lớn nhất thì \(\left|x-5\right|=0\Leftrightarrow x=-5\)

Vậy A lớn nhất bằng 100 khi và chỉ khi x= -5

b) Vì \(\left|y-3\right|\ge0\)nên \(\left|y-3\right|+50\ge50\)

Để B lớn nhất thì \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy B nhỏ nhất bằng 50 khi và chỉ khi y= 3

22 tháng 9 2021
Tập hợp các số tự nhiên n bằng ( 0 1 2 3 4...)
28 tháng 5 2017

Bài 1

\(A=x^2-3x+5=x^2-2.5x-2.5x+5=x\left(x-2.5\right)-2.5\left(x-2.5\right)=\left(x-2.5\right)\left(x-2.5\right)=\left(x-2.5\right)^2\)Ta có: \(\left(x-2.5\right)^2\ge0...\forall x\)

Dấu "=" xảy ra\(\Leftrightarrow\left(x-2.5\right)^2=0\Leftrightarrow x-2.5=0\Leftrightarrow x=2.5\)

Vậy giá trị nhỏ nhất của biểu thức A là 0.

\(B=\left(2x-1\right)^2+\left(x+2\right)^2=\left(4x^2-4x+1\right)+\left(x^2+4x+4\right)=5x^2+5\)

Ta có: \(5x^2\ge0..\forall x\Rightarrow5x^2+5\ge5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow5x^2=0\Leftrightarrow x^2=0\Leftrightarrow x=0\)

28 tháng 5 2017

Bài 1:

\(A=x^2-3x+5\)

\(=x^2-\dfrac{3}{2}x.2+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x^2-\dfrac{3}{2}x\right)-\left(\dfrac{3}{2}x-\dfrac{9}{4}\right)+\dfrac{11}{4}\)

\(=x\left(x-\dfrac{3}{2}\right)-\dfrac{3}{2}\left(x-\dfrac{3}{2}\right)+\dfrac{11}{4}\)

\(=\left(x-\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Dấu " = " khi \(\left(x-\dfrac{3}{2}\right)^2=0\Rightarrow x=\dfrac{3}{2}\)

Vậy \(MIN_A=\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)

Bài 2:

a, \(A=4-x^2+2x=-x^2+2x+4\)

\(=-\left(x^2-2x-4\right)=-\left(x^2-2x+1-5\right)\)

\(=-\left[\left(x-1\right)^2-5\right]\)

\(=-\left(x-1\right)^2+5\)

Ta có: \(-\left(x-1\right)^2\le0\Rightarrow A=-\left(x-1\right)^2+5\le5\)

Dấu " = " khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(MAX_A=5\) khi x = 1

b, \(B=4x-x^2=-x^2+4x\)

\(=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4\)

Ta có: \(-\left(x-2\right)^2\le0\Rightarrow B=-\left(x-2\right)^2+4\le4\)

Dấu " = " khi \(-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(MAX_B=4\) khi x = 2