K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2017

Bài 1

\(A=x^2-3x+5=x^2-2.5x-2.5x+5=x\left(x-2.5\right)-2.5\left(x-2.5\right)=\left(x-2.5\right)\left(x-2.5\right)=\left(x-2.5\right)^2\)Ta có: \(\left(x-2.5\right)^2\ge0...\forall x\)

Dấu "=" xảy ra\(\Leftrightarrow\left(x-2.5\right)^2=0\Leftrightarrow x-2.5=0\Leftrightarrow x=2.5\)

Vậy giá trị nhỏ nhất của biểu thức A là 0.

\(B=\left(2x-1\right)^2+\left(x+2\right)^2=\left(4x^2-4x+1\right)+\left(x^2+4x+4\right)=5x^2+5\)

Ta có: \(5x^2\ge0..\forall x\Rightarrow5x^2+5\ge5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow5x^2=0\Leftrightarrow x^2=0\Leftrightarrow x=0\)

28 tháng 5 2017

Bài 1:

\(A=x^2-3x+5\)

\(=x^2-\dfrac{3}{2}x.2+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x^2-\dfrac{3}{2}x\right)-\left(\dfrac{3}{2}x-\dfrac{9}{4}\right)+\dfrac{11}{4}\)

\(=x\left(x-\dfrac{3}{2}\right)-\dfrac{3}{2}\left(x-\dfrac{3}{2}\right)+\dfrac{11}{4}\)

\(=\left(x-\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

Ta có: \(\left(x-\dfrac{3}{2}\right)^2\ge0\Rightarrow A=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Dấu " = " khi \(\left(x-\dfrac{3}{2}\right)^2=0\Rightarrow x=\dfrac{3}{2}\)

Vậy \(MIN_A=\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)

Bài 2:

a, \(A=4-x^2+2x=-x^2+2x+4\)

\(=-\left(x^2-2x-4\right)=-\left(x^2-2x+1-5\right)\)

\(=-\left[\left(x-1\right)^2-5\right]\)

\(=-\left(x-1\right)^2+5\)

Ta có: \(-\left(x-1\right)^2\le0\Rightarrow A=-\left(x-1\right)^2+5\le5\)

Dấu " = " khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy \(MAX_A=5\) khi x = 1

b, \(B=4x-x^2=-x^2+4x\)

\(=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4\)

Ta có: \(-\left(x-2\right)^2\le0\Rightarrow B=-\left(x-2\right)^2+4\le4\)

Dấu " = " khi \(-\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy \(MAX_B=4\) khi x = 2

a. A=x2-3x+5=x2-1.5x-1.5x+2.25+2.75=x(x-1.5)-1.5(x-1.5)+2.75=(x-1.5)2+2.75

ta có (x-1.5)2 > hoặc = 0 với mọi x . Suy ra (x-1.5)2 +2.75 > hoặc = 2.75  với mọi x.

Dấu "=" xảy ra khi x-1.5=0 suy ra x=1.5

Vậy Amin=2.75 khi x=1.5

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

1 tháng 7 2016

\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)

\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)

\(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)

Vậy MaxA=5 khi x=1

\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)

Vậy MaxB=4 khi x=2

a) \(4-x^2+2x\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(\left(x-1\right)^2-5\right)\)

\(=5-\left(x-1\right)^2\ge5\)

MIn A = 5 khi \(x-1=0=>x=1\)

b) \(4x-x^2\)

\(=-\left(x^2-4x+4-4\right)\)

\(=>-\left(\left(x-2\right)^2-4\right)\)

\(=4-\left(x-2\right)\ge4\)

MIN B = 4 khi \(x-2=0=>x=2\)

Ủng hộ nha tối rồi

4 tháng 7 2019

a) 5x2 - 8x + 5

= 5(x2 - 8/5.x + 1)

= 5(x2 -2.4/5.x + 16/25 + 1 - 16/25)

= 5[(x-4/5)2 + 9/25]

= 5.(x-4/5)+ 9/5 >= 9/5. Dấu "=" xảy ra <=> x = 4/5. Vậy....

Còn lại tương tự nha bạn

4 tháng 7 2019

TL:

a) \(5x^2-8x+5\)

  \(=4x^2-8x+4+x^2+1=\left(2x-2\right)^2+x^2+1\) 

Ta có : \(\left(2x-2\right)^2+x^2+1\ge1\forall x\in R\) 

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-2\right)^2=0\) và  \(x^2=0\) 

                      \(\Leftrightarrow x=1\) và   x=0

Vậy GTNN của BT =1 tại....

b) \(4x^2+6x+15=4x^2+6x+\frac{9}{4}+\frac{51}{4}\) 

  \(=\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\) 

Ta có: \(\left(2x+\frac{3}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\forall x\in R\) 

Dấu "=" xảy ra \(\Leftrightarrow\left(2x+\frac{3}{2}\right)^2=0\Leftrightarrow2x=\frac{-3}{2}\Leftrightarrow x=\frac{-3}{4}\) 

Vậy GTNN của BT =\(\frac{51}{4}\) tại \(x=\frac{-3}{4}\) 

7 tháng 7 2017

1,A=(x2-6x+9)+2

=(x-3)2+2

ta thấy (x-3)2>=0 với mọi x

=>(x-3)2+2>=2 với mọi x

hay A>=2

dấu "="xảy ra x-3=0<=>x=3

vậy MinA=2 khi x=3

ý b sai đầu bài bạn nhé

C=-(x2-5x)

=-(x2-5x+25/4)+25/4

=-(x-5/2)2+25/4

ta thấy -(x-5/2)2<=0 với mọi x

=>-(x-5/2)2+25/4 <=25/4 với mọi x

hay C<=25/4

dấu "=" xảy ra khi x-5/2=0<=>x=5/2

vậy MaxC=25/4 khi x=5/2

k mk nha

7 tháng 7 2017

Ta có : A = x2 - 6x + 11

<=> A = x2 - 6x + 9 + 2 

<=> A = (x - 3)2 + 2

Mà (x - 3)2 \(\ge0\forall x\)

Nên A =  (x - 3)2 + 2 \(\ge2\forall x\)

Vậy Amin = 2 , dấu "=" xảy ra khi và chỉ khi x = 3

19 tháng 7 2016

\(A=x^2-6x+11=x^2-2.x.3+3^2+2\)

\(A=\left(x-3\right)^2+2\)

\(\left(x-3\right)^2\ge0\)với mọi \(x\in R\)

nên \(\left(x-3\right)^2+2\ge2\)với mọi x\(x\in R\)

Vậy \(Min_A=2\)khi đó \(x=3\)