Từ điểm A ở bên ngoài đường tròn tâm O kẻ tiếp tuyến AB với đường tròn (B là tiếp điểm). Lấy điểm C thuộc đường tròn (O) sao cho AC=AB (C khác B). Vẽ đk BE
a. AC vuông góc với OC. Từ đó suy ra AC là tiếp tuyến của (O) b. OA song song với CE
c) Gọi H là hình chiếu vuông góc của điểm C trên BE và M là giao điểm của AE và CH. Chứng minh M là trung điểm vủa CH
a: Xét ΔOBA và ΔOCA có
OB=OC
BA=CA
OA chung
Do đó: ΔOBA=ΔOCA
=>góc OCA=90 độ
=>AC là tiếp tuyến của (O)
b: Xét (O) có
ΔBCE nội tiếp
BE là đường kính
Do đó; ΔBCE vuông tại C
=>BC vuông góc với CE
AB=AC
OB=OC
=>AO là trung trực của BC
=>AO vuông góc với BC
=>AO//CE