K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Chứng minh AB=AC; DB=DM và EC=EM.

Chu vi ΔADE bằng

= AD + DM + ME + AE

= AD + DB + EC + AE

= AB + AC

 = 2AB.


 

25 tháng 4 2017

dap_hinh-bai27

Ta có AB = AC; DB = DM;
EC = EM.
Chu vi Δ ADE:
AD +AE +DE = AD +DM + AE + EM
=AD + DB + AE + EC = AB + AC = 2AB

21 tháng 7 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Theo tính chất hai tiếp tuyến cắt nhau ta có:

    DM = DB, EM = EC, AB = AC

Chu vi ΔADE:

    CΔADE = AD + DE + AE = AD + DM + ME + AE = AD + DB + EC + AE = AB + AC = 2AB (đpcm)

25 tháng 4 2017

Chứng minh AB=AC; DB=DM và EC=EM.

Chu vi ΔADE=ΔADE

= AD + DM + ME + AE

= AD + DB + EC + AE

= AB + AC + 2AB.

9 tháng 3 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Theo tính chất hai tiếp tuyến cắt nhau ta có:

    DM = DB, EM = EC, AB = AC

Chu vi ΔADE:

    CΔADE = AD + DE + AE = AD + DM + ME + AE = AD + DB + EC + AE = AB + AC = 2AB (đpcm)

11 tháng 2 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pitago vào tam giác vuông ABO, ta có:

A O 2 = A B 2 + B O 2

Suy ra: A B 2 = A O 2 - B O 2 = 5 2 - 3 2  = 16

AB = 4 (cm)

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

DB = DM

EM = EC

Chu vi của tam giác ADE bằng:

AD + DE + EA = AD + DB + AE + EC

 

= AB + AC = 2AB = 2.4 = 8 (cm)

28 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Theo tính chất của hai tiếp tuyến cắt nhau ta có :

DB = DM

EM = EC

Chu vi của tam giác ADE bằng :

AD + DE + EA = AD + DM + ME + EA

= AD + DB + AE + EC = AB + AC = 2AB

Mà tứ giác ABOC là hình vuông (chứng minh trên) nên:

AB = OB = 2 (cm)

Vậy chu vi của tam giác ADE bằng: 2.2 = 4 (cm)

18 tháng 7 2020

A D B O E C M

Theo tính chất hai tiếp tuyến cắt nhau ta có:

    DM = DB, EM = EC ,  AB = AC

Chu vi  \(\Delta ADE\):

    \(C_{\Delta ADE}\) = AD + DE + AE = AD + DM + ME + AE = AD + DB + EC + AE = AB + AC = 2AB ( đpcm )

17 tháng 5 2018

 a) C/m tg ABCO nội tiếp:

+) Ta có: góc ACO = 90•( vì AC là tiếp tuyến đg tròn (O))

               góc ABO = 90•( vì AB là tiếp tuyến đg tròn (O))

+) Xét tg ABOC có: góc ACO+ góc ABO=90•+90•=180•

Mà 2 góc ở vị trí đối nhau

=> tg ABOC nội tiếp đg tròn(dhnb)

b) C/m: CD// AO:

+) Vì AB và AC là 2 tiếp tuyến cắt nhau tại A(gt) => AO là đg pg của góc COB( t/c 2 tiếp tuyến cắt nhau)

=> AO là pg của tam giác COB

Mà tam giác COB cân tại O( OB=OC=R)

=> OA là đg cao của tam giác COB( t/c tam giác cân)

=> OA vuông góc vs CB( t/c) (1)

+) Xét (O) ta có:

BD là đg kính( gt)

góc BCD là góc nội tiếp chắn cung BD

=> góc BCD= 90• ( t/c góc nội tiếp chắn nửa đg tròn)

=> CD vuông góc vs CB(t/c) (2)

Từ(1) và (2) suy ra: CD// OA( từ vuông góc đến song song).

mk chưa ra câu c nên xin lỗi bn nhiều nhé....