\(\dfrac{x+2016}{5}\)-\(\dfrac{x+2016}{3}=\dfrac{x}{2}+1008\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(bx^2=ay^{2^{ }}=\dfrac{x^2}{\dfrac{1}{b}}=\dfrac{y^2}{\dfrac{1}{a}}=\dfrac{x^2+y^2}{\dfrac{a+b}{ab}}=\dfrac{ab}{a+b}.\)
\(\Leftrightarrow\dfrac{x^2}{a}=\dfrac{1}{a+b}=\dfrac{y^2}{b}.\)
\(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}=\left(\dfrac{x^2}{a}\right)^{1008}+\left(\dfrac{y^2}{b}\right)^{1008}=2.\left(\dfrac{1}{a+b}\right)^{1008}=\dfrac{2}{\left(a +b\right)^{1008}}\left(dpcm\right)\)
Theo bài ra ta có:
\(bx^2=ay^2\) \(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\)
\(x^2+y^2=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)
\(\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{1}{a+b}\) \(\left(1\right)\)
Từ \(\left(1\right)\) suy ra :
\(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}\) \(=\dfrac{\left(x^2\right)^{1008}}{a^{1008}}+\dfrac{\left(y^2\right)^{1008}}{b^{1008}}\)
\(=\left(\dfrac{x^2}{a}\right)^{1008}+\left(\dfrac{y^2}{b}\right)^{1008}\)
\(=\left(\dfrac{1}{a+b}\right)^{1008}+\left(\dfrac{1}{a+b}\right)^{1008}\)
\(=2\cdot\left(\dfrac{1}{a+b}\right)^{1008}\)
\(=2\cdot\dfrac{1^{1008}}{\left(a+b\right)^{1008}}\)
\(=2\cdot\dfrac{1}{\left(a+b\right)^{1008}}\)
\(=\dfrac{2}{a+b}^{1008}\)
Vậy \(\dfrac{x^{2016}}{a^{1008}}+\dfrac{y^{2016}}{b^{1008}}=\dfrac{2}{a+b}^{1008}\)
\(\left(x^2+2015x\right)\left(\dfrac{1}{2016}+\dfrac{1}{1008}+\dfrac{1}{672}+1\right)=2022\)
\(\Leftrightarrow\left(x^2+2015x\right).\dfrac{2022}{2016}=2022\)
\(\Leftrightarrow x^2+2015x=2016\)
\(\Leftrightarrow x^2+2015x-2016=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2016\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2016\end{matrix}\right.\)
\(\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}=5\)
\(\Leftrightarrow\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-5=0\)
\(\Leftrightarrow\dfrac{x}{2012}-1+\dfrac{x+1}{2013}-1+\dfrac{x+2}{2014}-1+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-1=0\)
\(\Leftrightarrow\dfrac{x-2012}{2012}+\dfrac{x-2012}{2013}+\dfrac{x-2012}{2014}+\dfrac{x-2012}{2015}+\dfrac{x-2012}{2016}=0\)
\(\Leftrightarrow\left(x-12\right).\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}\right)=0\)
\(\Leftrightarrow x-12=0\)
\(\Leftrightarrow x=12\)
\(\dfrac{x-1}{2016}+\dfrac{x-2}{2015}+\dfrac{x-3}{2014}+...+\dfrac{x-2016}{1}=2016\)
\(\Leftrightarrow\dfrac{x-1}{2016}-1+\dfrac{x-2}{2015}-1+\dfrac{x-3}{2014}-1+...+\dfrac{x-2016}{1}-1=0\)
\(\Leftrightarrow\dfrac{x-2017}{2016}+\dfrac{x-2017}{2015}+\dfrac{x-2017}{2014}+...+\dfrac{x-2017}{1}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\dfrac{1}{2016}+\dfrac{1}{2015}+...+1\right)=0\)
\(\Leftrightarrow x-2017=0\) (do \(\dfrac{1}{2016}+\dfrac{1}{2015}+...+1\ne0\))
\(\Rightarrow x=2017\)
Giải:
Ta có:
\(\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}=\dfrac{x}{3}+\dfrac{x}{5}+\dfrac{x}{2017}\)
\(\Leftrightarrow\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}-\dfrac{x}{3}-\dfrac{x}{5}-\dfrac{x}{2017}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}-\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{2017}\right)=0\)
Mà \(\dfrac{1}{2}>\dfrac{1}{3};\dfrac{1}{4}>\dfrac{1}{5};\dfrac{1}{2016}>\dfrac{1}{2017}\)
\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}-\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{2017}\right)\) \(\ne0\)
\(\Leftrightarrow x=0\)
\(\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}=\dfrac{x}{3}+\dfrac{x}{4}+\dfrac{x}{2017}\)
\(\Leftrightarrow\dfrac{x}{2}+\dfrac{x}{4}+\dfrac{x}{2016}-\dfrac{x}{3}-\dfrac{x}{4}-\dfrac{x}{2017}=0\)
\(\Leftrightarrow x\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{2016}-\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0
tìm x hay cm?
`[x+2016]/5-[x+2016]/3=x/2+1008`
`=>6(x+2016)-10(x+2016)=15x+30240`
`=>6x+12096-10x-20160=15x+30240`
`=>19x=-38304`
`=>x=-2016`