K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

\(A=\frac{1}{5}+\frac{1}{5^2}+........+\frac{1}{5^{2014}}\)

\(\Rightarrow5A=1+\frac{1}{5}+...........+\frac{1}{5^{2013}}\)

\(\Rightarrow5A-A=1+...........+\frac{1}{5^{2013}}-\frac{1}{5}+...........+\frac{1}{5^{2014}}\)

\(\Rightarrow4A=1-\frac{1}{5^{2014}}\)

\(\Rightarrow4A< 1\Rightarrow A< \frac{1}{4}\)

21 tháng 2 2017

=> 5A = 1 + 1/5 +...+1/5^2013

=>4A= 1- 1/5^2014

=> 4A< 1 => A < 1/4

2 tháng 10 2016

Ta có A = \(1+5+5^2+...+5^{2015}\)

=> 5A = \(5+5^2+5^3+...+5^{2016}\)

=> 5A - A =  \(5+5^2+5^3+...+5^{2016}-1-5-5^2-...-5^{2015}\)

=> 4A = \(5^{2016}-1\)

=> A = \(\left(5^{2016}-1\right):4\)

=> A chia hết cho 31

10 tháng 2 2019

TỪ ĐỀ BÀI => 5A=1+1/5+1/5^2+......+1/5^2013

                      CÓ 4A=5A-A

                    =>4A=(1+1/5+1/5^2+.....+1/5^2013)-(1/5+1/5^2+1/5^3+....+1/5^2014)

                   =>4A= 1- 1/5^2014

                   =>A= (1-1/5^2014)/4  ;CÓ 1-1/5^2014 <1

                    =>A<1/4

10 tháng 2 2019

\(\text{Giải}\)

\(\text{5A=1+1/5+1/5^2+......+1/5^2013}\)

\(\Rightarrow5A-A=4A=1-\frac{1}{5^{2014}}< 1\Rightarrow A< \frac{1}{4}\left(\text{đpcm}\right)\)

20 tháng 6 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)

\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

21 tháng 12 2018

vậy 1/5.2 + 34/3456.23 =vgy0 nên ta có :

1/2.5 + B = 1/16 - B = 32156.097 : 35.98 + -9 -76 , suy ra  

B= >89 _980 -  -50 + 678 x 54=143.098-2014/5.2015

vậy B=78

Chua hoc

Hk tot,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

k nhe Nguyen Chau Tuan Kiet

16 tháng 11 2021

\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)

16 tháng 11 2021

Giúp mình cả bài 4,5 ở dưới được ko?