cho hàm số y=f(x)=1/2x-2 tìm điều kiện của x để hàm số y =f(x) xác định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để hàm số $f(x)$ xác định thì:
$3x-2\neq 0$
Hay $x\neq \frac{2}{3}$
\(y=f\left(x\right)=\frac{1}{2x-2}\)
Để \(y=f\left(x\right)\)xác định => \(2x-2\ne0\)
=> \(2x\ne2\)
=> \(x\ne1\)
Bài 1:
a: f(0)=1
f(2)=-3x2+1=-6+1=-5
f(-2)=-3x2+1=-5
f(-1/2)=-3x1/2+1=-3/2+1=-1/2
b: f(x)=-3
=>-3|x|+1=-3
=>-3|x|=-4
=>|x|=4/3
=>x=4/3 hoặc x=-4/3
Đáp án A
Điều kiện đủ để hàm số y=f(x) đồng biến trên k là f ' x > 0 với mọi x ∈ K . Đáp án D thiếu tại hữu hạn điểm thuộc khoảng K.
a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)
b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)
c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}-2< =x< =2\\x< >0\end{matrix}\right.\)
c: \(f\left(-x\right)=\dfrac{\sqrt{2-\left(-x\right)}-\sqrt{2+\left(-x\right)}}{-x}=\dfrac{\sqrt{2+x}-\sqrt{2-x}}{-x}=\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}=f\left(x\right)\)
2x-2\(\ne\)0 <=> x\(\ne\)1